1       SUBROUTINE ZGEQR2( M, N, A, LDA, TAU, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, M, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  ZGEQR2 computes a QR factorization of a complex m by n matrix A:
 19 *  A = Q * R.
 20 *
 21 *  Arguments
 22 *  =========
 23 *
 24 *  M       (input) INTEGER
 25 *          The number of rows of the matrix A.  M >= 0.
 26 *
 27 *  N       (input) INTEGER
 28 *          The number of columns of the matrix A.  N >= 0.
 29 *
 30 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 31 *          On entry, the m by n matrix A.
 32 *          On exit, the elements on and above the diagonal of the array
 33 *          contain the min(m,n) by n upper trapezoidal matrix R (R is
 34 *          upper triangular if m >= n); the elements below the diagonal,
 35 *          with the array TAU, represent the unitary matrix Q as a
 36 *          product of elementary reflectors (see Further Details).
 37 *
 38 *  LDA     (input) INTEGER
 39 *          The leading dimension of the array A.  LDA >= max(1,M).
 40 *
 41 *  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
 42 *          The scalar factors of the elementary reflectors (see Further
 43 *          Details).
 44 *
 45 *  WORK    (workspace) COMPLEX*16 array, dimension (N)
 46 *
 47 *  INFO    (output) INTEGER
 48 *          = 0: successful exit
 49 *          < 0: if INFO = -i, the i-th argument had an illegal value
 50 *
 51 *  Further Details
 52 *  ===============
 53 *
 54 *  The matrix Q is represented as a product of elementary reflectors
 55 *
 56 *     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 57 *
 58 *  Each H(i) has the form
 59 *
 60 *     H(i) = I - tau * v * v**H
 61 *
 62 *  where tau is a complex scalar, and v is a complex vector with
 63 *  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
 64 *  and tau in TAU(i).
 65 *
 66 *  =====================================================================
 67 *
 68 *     .. Parameters ..
 69       COMPLEX*16         ONE
 70       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
 71 *     ..
 72 *     .. Local Scalars ..
 73       INTEGER            I, K
 74       COMPLEX*16         ALPHA
 75 *     ..
 76 *     .. External Subroutines ..
 77       EXTERNAL           XERBLA, ZLARF, ZLARFG
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          DCONJGMAXMIN
 81 *     ..
 82 *     .. Executable Statements ..
 83 *
 84 *     Test the input arguments
 85 *
 86       INFO = 0
 87       IF( M.LT.0 ) THEN
 88          INFO = -1
 89       ELSE IF( N.LT.0 ) THEN
 90          INFO = -2
 91       ELSE IF( LDA.LT.MAX1, M ) ) THEN
 92          INFO = -4
 93       END IF
 94       IF( INFO.NE.0 ) THEN
 95          CALL XERBLA( 'ZGEQR2'-INFO )
 96          RETURN
 97       END IF
 98 *
 99       K = MIN( M, N )
100 *
101       DO 10 I = 1, K
102 *
103 *        Generate elementary reflector H(i) to annihilate A(i+1:m,i)
104 *
105          CALL ZLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
106      $                TAU( I ) )
107          IF( I.LT.N ) THEN
108 *
109 *           Apply H(i)**H to A(i:m,i+1:n) from the left
110 *
111             ALPHA = A( I, I )
112             A( I, I ) = ONE
113             CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
114      $                  DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
115             A( I, I ) = ALPHA
116          END IF
117    10 CONTINUE
118       RETURN
119 *
120 *     End of ZGEQR2
121 *
122       END