1       SUBROUTINE ZGESVXX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
  2      $                    EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW,
  3      $                    BERR, N_ERR_BNDS, ERR_BNDS_NORM,
  4      $                    ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
  5      $                    INFO )
  6 *
  7 *     -- LAPACK driver routine (version 3.2.1)                          --
  8 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  9 *     -- Jason Riedy of Univ. of California Berkeley.                 --
 10 *     -- April 2009                                                   --
 11 *
 12 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 13 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 14 *
 15       IMPLICIT NONE
 16 *     ..
 17 *     .. Scalar Arguments ..
 18       CHARACTER          EQUED, FACT, TRANS
 19       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 20      $                   N_ERR_BNDS
 21       DOUBLE PRECISION   RCOND, RPVGRW
 22 *     ..
 23 *     .. Array Arguments ..
 24       INTEGER            IPIV( * )
 25       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 26      $                   X( LDX , * ),WORK( * )
 27       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
 28      $                   ERR_BNDS_NORM( NRHS, * ),
 29      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
 30 *     ..
 31 *
 32 *     Purpose
 33 *     =======
 34 *
 35 *     ZGESVXX uses the LU factorization to compute the solution to a
 36 *     complex*16 system of linear equations  A * X = B,  where A is an
 37 *     N-by-N matrix and X and B are N-by-NRHS matrices.
 38 *
 39 *     If requested, both normwise and maximum componentwise error bounds
 40 *     are returned. ZGESVXX will return a solution with a tiny
 41 *     guaranteed error (O(eps) where eps is the working machine
 42 *     precision) unless the matrix is very ill-conditioned, in which
 43 *     case a warning is returned. Relevant condition numbers also are
 44 *     calculated and returned.
 45 *
 46 *     ZGESVXX accepts user-provided factorizations and equilibration
 47 *     factors; see the definitions of the FACT and EQUED options.
 48 *     Solving with refinement and using a factorization from a previous
 49 *     ZGESVXX call will also produce a solution with either O(eps)
 50 *     errors or warnings, but we cannot make that claim for general
 51 *     user-provided factorizations and equilibration factors if they
 52 *     differ from what ZGESVXX would itself produce.
 53 *
 54 *     Description
 55 *     ===========
 56 *
 57 *     The following steps are performed:
 58 *
 59 *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
 60 *     the system:
 61 *
 62 *       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
 63 *       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 64 *       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 65 *
 66 *     Whether or not the system will be equilibrated depends on the
 67 *     scaling of the matrix A, but if equilibration is used, A is
 68 *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
 69 *     or diag(C)*B (if TRANS = 'T' or 'C').
 70 *
 71 *     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
 72 *     the matrix A (after equilibration if FACT = 'E') as
 73 *
 74 *       A = P * L * U,
 75 *
 76 *     where P is a permutation matrix, L is a unit lower triangular
 77 *     matrix, and U is upper triangular.
 78 *
 79 *     3. If some U(i,i)=0, so that U is exactly singular, then the
 80 *     routine returns with INFO = i. Otherwise, the factored form of A
 81 *     is used to estimate the condition number of the matrix A (see
 82 *     argument RCOND). If the reciprocal of the condition number is less
 83 *     than machine precision, the routine still goes on to solve for X
 84 *     and compute error bounds as described below.
 85 *
 86 *     4. The system of equations is solved for X using the factored form
 87 *     of A.
 88 *
 89 *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
 90 *     the routine will use iterative refinement to try to get a small
 91 *     error and error bounds.  Refinement calculates the residual to at
 92 *     least twice the working precision.
 93 *
 94 *     6. If equilibration was used, the matrix X is premultiplied by
 95 *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
 96 *     that it solves the original system before equilibration.
 97 *
 98 *     Arguments
 99 *     =========
100 *
101 *     Some optional parameters are bundled in the PARAMS array.  These
102 *     settings determine how refinement is performed, but often the
103 *     defaults are acceptable.  If the defaults are acceptable, users
104 *     can pass NPARAMS = 0 which prevents the source code from accessing
105 *     the PARAMS argument.
106 *
107 *     FACT    (input) CHARACTER*1
108 *     Specifies whether or not the factored form of the matrix A is
109 *     supplied on entry, and if not, whether the matrix A should be
110 *     equilibrated before it is factored.
111 *       = 'F':  On entry, AF and IPIV contain the factored form of A.
112 *               If EQUED is not 'N', the matrix A has been
113 *               equilibrated with scaling factors given by R and C.
114 *               A, AF, and IPIV are not modified.
115 *       = 'N':  The matrix A will be copied to AF and factored.
116 *       = 'E':  The matrix A will be equilibrated if necessary, then
117 *               copied to AF and factored.
118 *
119 *     TRANS   (input) CHARACTER*1
120 *     Specifies the form of the system of equations:
121 *       = 'N':  A * X = B     (No transpose)
122 *       = 'T':  A**T * X = B  (Transpose)
123 *       = 'C':  A**H * X = B  (Conjugate Transpose)
124 *
125 *     N       (input) INTEGER
126 *     The number of linear equations, i.e., the order of the
127 *     matrix A.  N >= 0.
128 *
129 *     NRHS    (input) INTEGER
130 *     The number of right hand sides, i.e., the number of columns
131 *     of the matrices B and X.  NRHS >= 0.
132 *
133 *     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
134 *     On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
135 *     not 'N', then A must have been equilibrated by the scaling
136 *     factors in R and/or C.  A is not modified if FACT = 'F' or
137 *     'N', or if FACT = 'E' and EQUED = 'N' on exit.
138 *
139 *     On exit, if EQUED .ne. 'N', A is scaled as follows:
140 *     EQUED = 'R':  A := diag(R) * A
141 *     EQUED = 'C':  A := A * diag(C)
142 *     EQUED = 'B':  A := diag(R) * A * diag(C).
143 *
144 *     LDA     (input) INTEGER
145 *     The leading dimension of the array A.  LDA >= max(1,N).
146 *
147 *     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
148 *     If FACT = 'F', then AF is an input argument and on entry
149 *     contains the factors L and U from the factorization
150 *     A = P*L*U as computed by ZGETRF.  If EQUED .ne. 'N', then
151 *     AF is the factored form of the equilibrated matrix A.
152 *
153 *     If FACT = 'N', then AF is an output argument and on exit
154 *     returns the factors L and U from the factorization A = P*L*U
155 *     of the original matrix A.
156 *
157 *     If FACT = 'E', then AF is an output argument and on exit
158 *     returns the factors L and U from the factorization A = P*L*U
159 *     of the equilibrated matrix A (see the description of A for
160 *     the form of the equilibrated matrix).
161 *
162 *     LDAF    (input) INTEGER
163 *     The leading dimension of the array AF.  LDAF >= max(1,N).
164 *
165 *     IPIV    (input or output) INTEGER array, dimension (N)
166 *     If FACT = 'F', then IPIV is an input argument and on entry
167 *     contains the pivot indices from the factorization A = P*L*U
168 *     as computed by ZGETRF; row i of the matrix was interchanged
169 *     with row IPIV(i).
170 *
171 *     If FACT = 'N', then IPIV is an output argument and on exit
172 *     contains the pivot indices from the factorization A = P*L*U
173 *     of the original matrix A.
174 *
175 *     If FACT = 'E', then IPIV is an output argument and on exit
176 *     contains the pivot indices from the factorization A = P*L*U
177 *     of the equilibrated matrix A.
178 *
179 *     EQUED   (input or output) CHARACTER*1
180 *     Specifies the form of equilibration that was done.
181 *       = 'N':  No equilibration (always true if FACT = 'N').
182 *       = 'R':  Row equilibration, i.e., A has been premultiplied by
183 *               diag(R).
184 *       = 'C':  Column equilibration, i.e., A has been postmultiplied
185 *               by diag(C).
186 *       = 'B':  Both row and column equilibration, i.e., A has been
187 *               replaced by diag(R) * A * diag(C).
188 *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
189 *     output argument.
190 *
191 *     R       (input or output) DOUBLE PRECISION array, dimension (N)
192 *     The row scale factors for A.  If EQUED = 'R' or 'B', A is
193 *     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
194 *     is not accessed.  R is an input argument if FACT = 'F';
195 *     otherwise, R is an output argument.  If FACT = 'F' and
196 *     EQUED = 'R' or 'B', each element of R must be positive.
197 *     If R is output, each element of R is a power of the radix.
198 *     If R is input, each element of R should be a power of the radix
199 *     to ensure a reliable solution and error estimates. Scaling by
200 *     powers of the radix does not cause rounding errors unless the
201 *     result underflows or overflows. Rounding errors during scaling
202 *     lead to refining with a matrix that is not equivalent to the
203 *     input matrix, producing error estimates that may not be
204 *     reliable.
205 *
206 *     C       (input or output) DOUBLE PRECISION array, dimension (N)
207 *     The column scale factors for A.  If EQUED = 'C' or 'B', A is
208 *     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
209 *     is not accessed.  C is an input argument if FACT = 'F';
210 *     otherwise, C is an output argument.  If FACT = 'F' and
211 *     EQUED = 'C' or 'B', each element of C must be positive.
212 *     If C is output, each element of C is a power of the radix.
213 *     If C is input, each element of C should be a power of the radix
214 *     to ensure a reliable solution and error estimates. Scaling by
215 *     powers of the radix does not cause rounding errors unless the
216 *     result underflows or overflows. Rounding errors during scaling
217 *     lead to refining with a matrix that is not equivalent to the
218 *     input matrix, producing error estimates that may not be
219 *     reliable.
220 *
221 *     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
222 *     On entry, the N-by-NRHS right hand side matrix B.
223 *     On exit,
224 *     if EQUED = 'N', B is not modified;
225 *     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
226 *        diag(R)*B;
227 *     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
228 *        overwritten by diag(C)*B.
229 *
230 *     LDB     (input) INTEGER
231 *     The leading dimension of the array B.  LDB >= max(1,N).
232 *
233 *     X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
234 *     If INFO = 0, the N-by-NRHS solution matrix X to the original
235 *     system of equations.  Note that A and B are modified on exit
236 *     if EQUED .ne. 'N', and the solution to the equilibrated system is
237 *     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
238 *     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
239 *
240 *     LDX     (input) INTEGER
241 *     The leading dimension of the array X.  LDX >= max(1,N).
242 *
243 *     RCOND   (output) DOUBLE PRECISION
244 *     Reciprocal scaled condition number.  This is an estimate of the
245 *     reciprocal Skeel condition number of the matrix A after
246 *     equilibration (if done).  If this is less than the machine
247 *     precision (in particular, if it is zero), the matrix is singular
248 *     to working precision.  Note that the error may still be small even
249 *     if this number is very small and the matrix appears ill-
250 *     conditioned.
251 *
252 *     RPVGRW  (output) DOUBLE PRECISION
253 *     Reciprocal pivot growth.  On exit, this contains the reciprocal
254 *     pivot growth factor norm(A)/norm(U). The "max absolute element"
255 *     norm is used.  If this is much less than 1, then the stability of
256 *     the LU factorization of the (equilibrated) matrix A could be poor.
257 *     This also means that the solution X, estimated condition numbers,
258 *     and error bounds could be unreliable. If factorization fails with
259 *     0<INFO<=N, then this contains the reciprocal pivot growth factor
260 *     for the leading INFO columns of A.  In ZGESVX, this quantity is
261 *     returned in WORK(1).
262 *
263 *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
264 *     Componentwise relative backward error.  This is the
265 *     componentwise relative backward error of each solution vector X(j)
266 *     (i.e., the smallest relative change in any element of A or B that
267 *     makes X(j) an exact solution).
268 *
269 *     N_ERR_BNDS (input) INTEGER
270 *     Number of error bounds to return for each right hand side
271 *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
272 *     ERR_BNDS_COMP below.
273 *
274 *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
275 *     For each right-hand side, this array contains information about
276 *     various error bounds and condition numbers corresponding to the
277 *     normwise relative error, which is defined as follows:
278 *
279 *     Normwise relative error in the ith solution vector:
280 *             max_j (abs(XTRUE(j,i) - X(j,i)))
281 *            ------------------------------
282 *                  max_j abs(X(j,i))
283 *
284 *     The array is indexed by the type of error information as described
285 *     below. There currently are up to three pieces of information
286 *     returned.
287 *
288 *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
289 *     right-hand side.
290 *
291 *     The second index in ERR_BNDS_NORM(:,err) contains the following
292 *     three fields:
293 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
294 *              reciprocal condition number is less than the threshold
295 *              sqrt(n) * dlamch('Epsilon').
296 *
297 *     err = 2 "Guaranteed" error bound: The estimated forward error,
298 *              almost certainly within a factor of 10 of the true error
299 *              so long as the next entry is greater than the threshold
300 *              sqrt(n) * dlamch('Epsilon'). This error bound should only
301 *              be trusted if the previous boolean is true.
302 *
303 *     err = 3  Reciprocal condition number: Estimated normwise
304 *              reciprocal condition number.  Compared with the threshold
305 *              sqrt(n) * dlamch('Epsilon') to determine if the error
306 *              estimate is "guaranteed". These reciprocal condition
307 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
308 *              appropriately scaled matrix Z.
309 *              Let Z = S*A, where S scales each row by a power of the
310 *              radix so all absolute row sums of Z are approximately 1.
311 *
312 *     See Lapack Working Note 165 for further details and extra
313 *     cautions.
314 *
315 *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
316 *     For each right-hand side, this array contains information about
317 *     various error bounds and condition numbers corresponding to the
318 *     componentwise relative error, which is defined as follows:
319 *
320 *     Componentwise relative error in the ith solution vector:
321 *                    abs(XTRUE(j,i) - X(j,i))
322 *             max_j ----------------------
323 *                         abs(X(j,i))
324 *
325 *     The array is indexed by the right-hand side i (on which the
326 *     componentwise relative error depends), and the type of error
327 *     information as described below. There currently are up to three
328 *     pieces of information returned for each right-hand side. If
329 *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
330 *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
331 *     the first (:,N_ERR_BNDS) entries are returned.
332 *
333 *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
334 *     right-hand side.
335 *
336 *     The second index in ERR_BNDS_COMP(:,err) contains the following
337 *     three fields:
338 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
339 *              reciprocal condition number is less than the threshold
340 *              sqrt(n) * dlamch('Epsilon').
341 *
342 *     err = 2 "Guaranteed" error bound: The estimated forward error,
343 *              almost certainly within a factor of 10 of the true error
344 *              so long as the next entry is greater than the threshold
345 *              sqrt(n) * dlamch('Epsilon'). This error bound should only
346 *              be trusted if the previous boolean is true.
347 *
348 *     err = 3  Reciprocal condition number: Estimated componentwise
349 *              reciprocal condition number.  Compared with the threshold
350 *              sqrt(n) * dlamch('Epsilon') to determine if the error
351 *              estimate is "guaranteed". These reciprocal condition
352 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
353 *              appropriately scaled matrix Z.
354 *              Let Z = S*(A*diag(x)), where x is the solution for the
355 *              current right-hand side and S scales each row of
356 *              A*diag(x) by a power of the radix so all absolute row
357 *              sums of Z are approximately 1.
358 *
359 *     See Lapack Working Note 165 for further details and extra
360 *     cautions.
361 *
362 *     NPARAMS (input) INTEGER
363 *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
364 *     PARAMS array is never referenced and default values are used.
365 *
366 *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
367 *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
368 *     that entry will be filled with default value used for that
369 *     parameter.  Only positions up to NPARAMS are accessed; defaults
370 *     are used for higher-numbered parameters.
371 *
372 *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
373 *            refinement or not.
374 *         Default: 1.0D+0
375 *            = 0.0 : No refinement is performed, and no error bounds are
376 *                    computed.
377 *            = 1.0 : Use the extra-precise refinement algorithm.
378 *              (other values are reserved for future use)
379 *
380 *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
381 *            computations allowed for refinement.
382 *         Default: 10
383 *         Aggressive: Set to 100 to permit convergence using approximate
384 *                     factorizations or factorizations other than LU. If
385 *                     the factorization uses a technique other than
386 *                     Gaussian elimination, the guarantees in
387 *                     err_bnds_norm and err_bnds_comp may no longer be
388 *                     trustworthy.
389 *
390 *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
391 *            will attempt to find a solution with small componentwise
392 *            relative error in the double-precision algorithm.  Positive
393 *            is true, 0.0 is false.
394 *         Default: 1.0 (attempt componentwise convergence)
395 *
396 *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
397 *
398 *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
399 *
400 *     INFO    (output) INTEGER
401 *       = 0:  Successful exit. The solution to every right-hand side is
402 *         guaranteed.
403 *       < 0:  If INFO = -i, the i-th argument had an illegal value
404 *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
405 *         has been completed, but the factor U is exactly singular, so
406 *         the solution and error bounds could not be computed. RCOND = 0
407 *         is returned.
408 *       = N+J: The solution corresponding to the Jth right-hand side is
409 *         not guaranteed. The solutions corresponding to other right-
410 *         hand sides K with K > J may not be guaranteed as well, but
411 *         only the first such right-hand side is reported. If a small
412 *         componentwise error is not requested (PARAMS(3) = 0.0) then
413 *         the Jth right-hand side is the first with a normwise error
414 *         bound that is not guaranteed (the smallest J such
415 *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
416 *         the Jth right-hand side is the first with either a normwise or
417 *         componentwise error bound that is not guaranteed (the smallest
418 *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
419 *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
420 *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
421 *         about all of the right-hand sides check ERR_BNDS_NORM or
422 *         ERR_BNDS_COMP.
423 *
424 *     ==================================================================
425 *
426 *     .. Parameters ..
427       DOUBLE PRECISION   ZERO, ONE
428       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
429       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
430       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
431       INTEGER            CMP_ERR_I, PIV_GROWTH_I
432       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
433      $                   BERR_I = 3 )
434       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
435       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
436      $                   PIV_GROWTH_I = 9 )
437 *     ..
438 *     .. Local Scalars ..
439       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
440       INTEGER            INFEQU, J
441       DOUBLE PRECISION   AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
442      $                   ROWCND, SMLNUM
443 *     ..
444 *     .. External Functions ..
445       EXTERNAL           LSAME, DLAMCH, ZLA_RPVGRW
446       LOGICAL            LSAME
447       DOUBLE PRECISION   DLAMCH, ZLA_RPVGRW
448 *     ..
449 *     .. External Subroutines ..
450       EXTERNAL           ZGEEQUB, ZGETRF, ZGETRS, ZLACPY, ZLAQGE,
451      $                   XERBLA, ZLASCL2, ZGERFSX
452 *     ..
453 *     .. Intrinsic Functions ..
454       INTRINSIC          MAXMIN
455 *     ..
456 *     .. Executable Statements ..
457 *
458       INFO = 0
459       NOFACT = LSAME( FACT, 'N' )
460       EQUIL = LSAME( FACT, 'E' )
461       NOTRAN = LSAME( TRANS, 'N' )
462       SMLNUM = DLAMCH( 'Safe minimum' )
463       BIGNUM = ONE / SMLNUM
464       IF( NOFACT .OR. EQUIL ) THEN
465          EQUED = 'N'
466          ROWEQU = .FALSE.
467          COLEQU = .FALSE.
468       ELSE
469          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
470          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
471       END IF
472 *
473 *     Default is failure.  If an input parameter is wrong or
474 *     factorization fails, make everything look horrible.  Only the
475 *     pivot growth is set here, the rest is initialized in ZGERFSX.
476 *
477       RPVGRW = ZERO
478 *
479 *     Test the input parameters.  PARAMS is not tested until ZGERFSX.
480 *
481       IF.NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
482      $     LSAME( FACT, 'F' ) ) THEN
483          INFO = -1
484       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
485      $        LSAME( TRANS, 'C' ) ) THEN
486          INFO = -2
487       ELSE IF( N.LT.0 ) THEN
488          INFO = -3
489       ELSE IF( NRHS.LT.0 ) THEN
490          INFO = -4
491       ELSE IF( LDA.LT.MAX1, N ) ) THEN
492          INFO = -6
493       ELSE IF( LDAF.LT.MAX1, N ) ) THEN
494          INFO = -8
495       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
496      $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
497          INFO = -10
498       ELSE
499          IF( ROWEQU ) THEN
500             RCMIN = BIGNUM
501             RCMAX = ZERO
502             DO 10 J = 1, N
503                RCMIN = MIN( RCMIN, R( J ) )
504                RCMAX = MAX( RCMAX, R( J ) )
505  10         CONTINUE
506             IF( RCMIN.LE.ZERO ) THEN
507                INFO = -11
508             ELSE IF( N.GT.0 ) THEN
509                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
510             ELSE
511                ROWCND = ONE
512             END IF
513          END IF
514          IF( COLEQU .AND. INFO.EQ.0 ) THEN
515             RCMIN = BIGNUM
516             RCMAX = ZERO
517             DO 20 J = 1, N
518                RCMIN = MIN( RCMIN, C( J ) )
519                RCMAX = MAX( RCMAX, C( J ) )
520  20         CONTINUE
521             IF( RCMIN.LE.ZERO ) THEN
522                INFO = -12
523             ELSE IF( N.GT.0 ) THEN
524                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
525             ELSE
526                COLCND = ONE
527             END IF
528          END IF
529          IF( INFO.EQ.0 ) THEN
530             IF( LDB.LT.MAX1, N ) ) THEN
531                INFO = -14
532             ELSE IF( LDX.LT.MAX1, N ) ) THEN
533                INFO = -16
534             END IF
535          END IF
536       END IF
537 *
538       IF( INFO.NE.0 ) THEN
539          CALL XERBLA( 'ZGESVXX'-INFO )
540          RETURN
541       END IF
542 *
543       IF( EQUIL ) THEN
544 *
545 *     Compute row and column scalings to equilibrate the matrix A.
546 *
547          CALL ZGEEQUB( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
548      $        INFEQU )
549          IF( INFEQU.EQ.0 ) THEN
550 *
551 *     Equilibrate the matrix.
552 *
553             CALL ZLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
554      $           EQUED )
555             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
556             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
557          END IF
558 *
559 *     If the scaling factors are not applied, set them to 1.0.
560 *
561          IF ( .NOT.ROWEQU ) THEN
562             DO J = 1, N
563                R( J ) = 1.0D+0
564             END DO
565          END IF
566          IF ( .NOT.COLEQU ) THEN
567             DO J = 1, N
568                C( J ) = 1.0D+0
569             END DO
570          END IF
571       END IF
572 *
573 *     Scale the right-hand side.
574 *
575       IF( NOTRAN ) THEN
576          IF( ROWEQU ) CALL ZLASCL2( N, NRHS, R, B, LDB )
577       ELSE
578          IF( COLEQU ) CALL ZLASCL2( N, NRHS, C, B, LDB )
579       END IF
580 *
581       IF( NOFACT .OR. EQUIL ) THEN
582 *
583 *        Compute the LU factorization of A.
584 *
585          CALL ZLACPY( 'Full', N, N, A, LDA, AF, LDAF )
586          CALL ZGETRF( N, N, AF, LDAF, IPIV, INFO )
587 *
588 *        Return if INFO is non-zero.
589 *
590          IF( INFO.GT.0 ) THEN
591 *
592 *           Pivot in column INFO is exactly 0
593 *           Compute the reciprocal pivot growth factor of the
594 *           leading rank-deficient INFO columns of A.
595 *
596             RPVGRW = ZLA_RPVGRW( N, INFO, A, LDA, AF, LDAF )
597             RETURN
598          END IF
599       END IF
600 *
601 *     Compute the reciprocal pivot growth factor RPVGRW.
602 *
603       RPVGRW = ZLA_RPVGRW( N, N, A, LDA, AF, LDAF )
604 *
605 *     Compute the solution matrix X.
606 *
607       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
608       CALL ZGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
609 *
610 *     Use iterative refinement to improve the computed solution and
611 *     compute error bounds and backward error estimates for it.
612 *
613       CALL ZGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF,
614      $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
615      $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
616      $     WORK, RWORK, INFO )
617 *
618 *     Scale solutions.
619 *
620       IF ( COLEQU .AND. NOTRAN ) THEN
621          CALL ZLASCL2 ( N, NRHS, C, X, LDX )
622       ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
623          CALL ZLASCL2 ( N, NRHS, R, X, LDX )
624       END IF
625 *
626       RETURN
627 *
628 *     End of ZGESVXX
629 *
630       END