1       SUBROUTINE ZGETC2( N, A, LDA, IPIV, JPIV, INFO )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDA, N
 10 *     ..
 11 *     .. Array Arguments ..
 12       INTEGER            IPIV( * ), JPIV( * )
 13       COMPLEX*16         A( LDA, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZGETC2 computes an LU factorization, using complete pivoting, of the
 20 *  n-by-n matrix A. The factorization has the form A = P * L * U * Q,
 21 *  where P and Q are permutation matrices, L is lower triangular with
 22 *  unit diagonal elements and U is upper triangular.
 23 *
 24 *  This is a level 1 BLAS version of the algorithm.
 25 *
 26 *  Arguments
 27 *  =========
 28 *
 29 *  N       (input) INTEGER
 30 *          The order of the matrix A. N >= 0.
 31 *
 32 *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
 33 *          On entry, the n-by-n matrix to be factored.
 34 *          On exit, the factors L and U from the factorization
 35 *          A = P*L*U*Q; the unit diagonal elements of L are not stored.
 36 *          If U(k, k) appears to be less than SMIN, U(k, k) is given the
 37 *          value of SMIN, giving a nonsingular perturbed system.
 38 *
 39 *  LDA     (input) INTEGER
 40 *          The leading dimension of the array A.  LDA >= max(1, N).
 41 *
 42 *  IPIV    (output) INTEGER array, dimension (N).
 43 *          The pivot indices; for 1 <= i <= N, row i of the
 44 *          matrix has been interchanged with row IPIV(i).
 45 *
 46 *  JPIV    (output) INTEGER array, dimension (N).
 47 *          The pivot indices; for 1 <= j <= N, column j of the
 48 *          matrix has been interchanged with column JPIV(j).
 49 *
 50 *  INFO    (output) INTEGER
 51 *           = 0: successful exit
 52 *           > 0: if INFO = k, U(k, k) is likely to produce overflow if
 53 *                one tries to solve for x in Ax = b. So U is perturbed
 54 *                to avoid the overflow.
 55 *
 56 *  Further Details
 57 *  ===============
 58 *
 59 *  Based on contributions by
 60 *     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 61 *     Umea University, S-901 87 Umea, Sweden.
 62 *
 63 *  =====================================================================
 64 *
 65 *     .. Parameters ..
 66       DOUBLE PRECISION   ZERO, ONE
 67       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 68 *     ..
 69 *     .. Local Scalars ..
 70       INTEGER            I, IP, IPV, J, JP, JPV
 71       DOUBLE PRECISION   BIGNUM, EPS, SMIN, SMLNUM, XMAX
 72 *     ..
 73 *     .. External Subroutines ..
 74       EXTERNAL           ZGERU, ZSWAP
 75 *     ..
 76 *     .. External Functions ..
 77       DOUBLE PRECISION   DLAMCH
 78       EXTERNAL           DLAMCH
 79 *     ..
 80 *     .. Intrinsic Functions ..
 81       INTRINSIC          ABSDCMPLXMAX
 82 *     ..
 83 *     .. Executable Statements ..
 84 *
 85 *     Set constants to control overflow
 86 *
 87       INFO = 0
 88       EPS = DLAMCH( 'P' )
 89       SMLNUM = DLAMCH( 'S' ) / EPS
 90       BIGNUM = ONE / SMLNUM
 91       CALL DLABAD( SMLNUM, BIGNUM )
 92 *
 93 *     Factorize A using complete pivoting.
 94 *     Set pivots less than SMIN to SMIN
 95 *
 96       DO 40 I = 1, N - 1
 97 *
 98 *        Find max element in matrix A
 99 *
100          XMAX = ZERO
101          DO 20 IP = I, N
102             DO 10 JP = I, N
103                IFABS( A( IP, JP ) ).GE.XMAX ) THEN
104                   XMAX = ABS( A( IP, JP ) )
105                   IPV = IP
106                   JPV = JP
107                END IF
108    10       CONTINUE
109    20    CONTINUE
110          IF( I.EQ.1 )
111      $      SMIN = MAX( EPS*XMAX, SMLNUM )
112 *
113 *        Swap rows
114 *
115          IF( IPV.NE.I )
116      $      CALL ZSWAP( N, A( IPV, 1 ), LDA, A( I, 1 ), LDA )
117          IPIV( I ) = IPV
118 *
119 *        Swap columns
120 *
121          IF( JPV.NE.I )
122      $      CALL ZSWAP( N, A( 1, JPV ), 1, A( 1, I ), 1 )
123          JPIV( I ) = JPV
124 *
125 *        Check for singularity
126 *
127          IFABS( A( I, I ) ).LT.SMIN ) THEN
128             INFO = I
129             A( I, I ) = DCMPLX( SMIN, ZERO )
130          END IF
131          DO 30 J = I + 1, N
132             A( J, I ) = A( J, I ) / A( I, I )
133    30    CONTINUE
134          CALL ZGERU( N-I, N-I, -DCMPLX( ONE ), A( I+1, I ), 1,
135      $               A( I, I+1 ), LDA, A( I+1, I+1 ), LDA )
136    40 CONTINUE
137 *
138       IFABS( A( N, N ) ).LT.SMIN ) THEN
139          INFO = N
140          A( N, N ) = DCMPLX( SMIN, ZERO )
141       END IF
142       RETURN
143 *
144 *     End of ZGETC2
145 *
146       END