1       SUBROUTINE ZGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB,
  2      $                  SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  3      $                  LWORK, RWORK, BWORK, INFO )
  4 *
  5 *  -- LAPACK driver routine (version 3.2) --
  6 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  7 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  8 *     November 2006
  9 *
 10 *     .. Scalar Arguments ..
 11       CHARACTER          JOBVSL, JOBVSR, SORT
 12       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
 13 *     ..
 14 *     .. Array Arguments ..
 15       LOGICAL            BWORK( * )
 16       DOUBLE PRECISION   RWORK( * )
 17       COMPLEX*16         A( LDA, * ), ALPHA( * ), B( LDB, * ),
 18      $                   BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
 19      $                   WORK( * )
 20 *     ..
 21 *     .. Function Arguments ..
 22       LOGICAL            SELCTG
 23       EXTERNAL           SELCTG
 24 *     ..
 25 *
 26 *  Purpose
 27 *  =======
 28 *
 29 *  ZGGES computes for a pair of N-by-N complex nonsymmetric matrices
 30 *  (A,B), the generalized eigenvalues, the generalized complex Schur
 31 *  form (S, T), and optionally left and/or right Schur vectors (VSL
 32 *  and VSR). This gives the generalized Schur factorization
 33 *
 34 *          (A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
 35 *
 36 *  where (VSR)**H is the conjugate-transpose of VSR.
 37 *
 38 *  Optionally, it also orders the eigenvalues so that a selected cluster
 39 *  of eigenvalues appears in the leading diagonal blocks of the upper
 40 *  triangular matrix S and the upper triangular matrix T. The leading
 41 *  columns of VSL and VSR then form an unitary basis for the
 42 *  corresponding left and right eigenspaces (deflating subspaces).
 43 *
 44 *  (If only the generalized eigenvalues are needed, use the driver
 45 *  ZGGEV instead, which is faster.)
 46 *
 47 *  A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
 48 *  or a ratio alpha/beta = w, such that  A - w*B is singular.  It is
 49 *  usually represented as the pair (alpha,beta), as there is a
 50 *  reasonable interpretation for beta=0, and even for both being zero.
 51 *
 52 *  A pair of matrices (S,T) is in generalized complex Schur form if S
 53 *  and T are upper triangular and, in addition, the diagonal elements
 54 *  of T are non-negative real numbers.
 55 *
 56 *  Arguments
 57 *  =========
 58 *
 59 *  JOBVSL  (input) CHARACTER*1
 60 *          = 'N':  do not compute the left Schur vectors;
 61 *          = 'V':  compute the left Schur vectors.
 62 *
 63 *  JOBVSR  (input) CHARACTER*1
 64 *          = 'N':  do not compute the right Schur vectors;
 65 *          = 'V':  compute the right Schur vectors.
 66 *
 67 *  SORT    (input) CHARACTER*1
 68 *          Specifies whether or not to order the eigenvalues on the
 69 *          diagonal of the generalized Schur form.
 70 *          = 'N':  Eigenvalues are not ordered;
 71 *          = 'S':  Eigenvalues are ordered (see SELCTG).
 72 *
 73 *  SELCTG  (external procedure) LOGICAL FUNCTION of two COMPLEX*16 arguments
 74 *          SELCTG must be declared EXTERNAL in the calling subroutine.
 75 *          If SORT = 'N', SELCTG is not referenced.
 76 *          If SORT = 'S', SELCTG is used to select eigenvalues to sort
 77 *          to the top left of the Schur form.
 78 *          An eigenvalue ALPHA(j)/BETA(j) is selected if
 79 *          SELCTG(ALPHA(j),BETA(j)) is true.
 80 *
 81 *          Note that a selected complex eigenvalue may no longer satisfy
 82 *          SELCTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
 83 *          ordering may change the value of complex eigenvalues
 84 *          (especially if the eigenvalue is ill-conditioned), in this
 85 *          case INFO is set to N+2 (See INFO below).
 86 *
 87 *  N       (input) INTEGER
 88 *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
 89 *
 90 *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
 91 *          On entry, the first of the pair of matrices.
 92 *          On exit, A has been overwritten by its generalized Schur
 93 *          form S.
 94 *
 95 *  LDA     (input) INTEGER
 96 *          The leading dimension of A.  LDA >= max(1,N).
 97 *
 98 *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
 99 *          On entry, the second of the pair of matrices.
100 *          On exit, B has been overwritten by its generalized Schur
101 *          form T.
102 *
103 *  LDB     (input) INTEGER
104 *          The leading dimension of B.  LDB >= max(1,N).
105 *
106 *  SDIM    (output) INTEGER
107 *          If SORT = 'N', SDIM = 0.
108 *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
109 *          for which SELCTG is true.
110 *
111 *  ALPHA   (output) COMPLEX*16 array, dimension (N)
112 *  BETA    (output) COMPLEX*16 array, dimension (N)
113 *          On exit,  ALPHA(j)/BETA(j), j=1,...,N, will be the
114 *          generalized eigenvalues.  ALPHA(j), j=1,...,N  and  BETA(j),
115 *          j=1,...,N  are the diagonals of the complex Schur form (A,B)
116 *          output by ZGGES. The  BETA(j) will be non-negative real.
117 *
118 *          Note: the quotients ALPHA(j)/BETA(j) may easily over- or
119 *          underflow, and BETA(j) may even be zero.  Thus, the user
120 *          should avoid naively computing the ratio alpha/beta.
121 *          However, ALPHA will be always less than and usually
122 *          comparable with norm(A) in magnitude, and BETA always less
123 *          than and usually comparable with norm(B).
124 *
125 *  VSL     (output) COMPLEX*16 array, dimension (LDVSL,N)
126 *          If JOBVSL = 'V', VSL will contain the left Schur vectors.
127 *          Not referenced if JOBVSL = 'N'.
128 *
129 *  LDVSL   (input) INTEGER
130 *          The leading dimension of the matrix VSL. LDVSL >= 1, and
131 *          if JOBVSL = 'V', LDVSL >= N.
132 *
133 *  VSR     (output) COMPLEX*16 array, dimension (LDVSR,N)
134 *          If JOBVSR = 'V', VSR will contain the right Schur vectors.
135 *          Not referenced if JOBVSR = 'N'.
136 *
137 *  LDVSR   (input) INTEGER
138 *          The leading dimension of the matrix VSR. LDVSR >= 1, and
139 *          if JOBVSR = 'V', LDVSR >= N.
140 *
141 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
142 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
143 *
144 *  LWORK   (input) INTEGER
145 *          The dimension of the array WORK.  LWORK >= max(1,2*N).
146 *          For good performance, LWORK must generally be larger.
147 *
148 *          If LWORK = -1, then a workspace query is assumed; the routine
149 *          only calculates the optimal size of the WORK array, returns
150 *          this value as the first entry of the WORK array, and no error
151 *          message related to LWORK is issued by XERBLA.
152 *
153 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (8*N)
154 *
155 *  BWORK   (workspace) LOGICAL array, dimension (N)
156 *          Not referenced if SORT = 'N'.
157 *
158 *  INFO    (output) INTEGER
159 *          = 0:  successful exit
160 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
161 *          =1,...,N:
162 *                The QZ iteration failed.  (A,B) are not in Schur
163 *                form, but ALPHA(j) and BETA(j) should be correct for
164 *                j=INFO+1,...,N.
165 *          > N:  =N+1: other than QZ iteration failed in ZHGEQZ
166 *                =N+2: after reordering, roundoff changed values of
167 *                      some complex eigenvalues so that leading
168 *                      eigenvalues in the Generalized Schur form no
169 *                      longer satisfy SELCTG=.TRUE.  This could also
170 *                      be caused due to scaling.
171 *                =N+3: reordering falied in ZTGSEN.
172 *
173 *  =====================================================================
174 *
175 *     .. Parameters ..
176       DOUBLE PRECISION   ZERO, ONE
177       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
178       COMPLEX*16         CZERO, CONE
179       PARAMETER          ( CZERO = ( 0.0D00.0D0 ),
180      $                   CONE = ( 1.0D00.0D0 ) )
181 *     ..
182 *     .. Local Scalars ..
183       LOGICAL            CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL,
184      $                   LQUERY, WANTST
185       INTEGER            I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT,
186      $                   ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKMIN,
187      $                   LWKOPT
188       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL,
189      $                   PVSR, SMLNUM
190 *     ..
191 *     .. Local Arrays ..
192       INTEGER            IDUM( 1 )
193       DOUBLE PRECISION   DIF( 2 )
194 *     ..
195 *     .. External Subroutines ..
196       EXTERNAL           DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHRD,
197      $                   ZHGEQZ, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR,
198      $                   ZUNMQR
199 *     ..
200 *     .. External Functions ..
201       LOGICAL            LSAME
202       INTEGER            ILAENV
203       DOUBLE PRECISION   DLAMCH, ZLANGE
204       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANGE
205 *     ..
206 *     .. Intrinsic Functions ..
207       INTRINSIC          MAXSQRT
208 *     ..
209 *     .. Executable Statements ..
210 *
211 *     Decode the input arguments
212 *
213       IF( LSAME( JOBVSL, 'N' ) ) THEN
214          IJOBVL = 1
215          ILVSL = .FALSE.
216       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
217          IJOBVL = 2
218          ILVSL = .TRUE.
219       ELSE
220          IJOBVL = -1
221          ILVSL = .FALSE.
222       END IF
223 *
224       IF( LSAME( JOBVSR, 'N' ) ) THEN
225          IJOBVR = 1
226          ILVSR = .FALSE.
227       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
228          IJOBVR = 2
229          ILVSR = .TRUE.
230       ELSE
231          IJOBVR = -1
232          ILVSR = .FALSE.
233       END IF
234 *
235       WANTST = LSAME( SORT, 'S' )
236 *
237 *     Test the input arguments
238 *
239       INFO = 0
240       LQUERY = ( LWORK.EQ.-1 )
241       IF( IJOBVL.LE.0 ) THEN
242          INFO = -1
243       ELSE IF( IJOBVR.LE.0 ) THEN
244          INFO = -2
245       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
246          INFO = -3
247       ELSE IF( N.LT.0 ) THEN
248          INFO = -5
249       ELSE IF( LDA.LT.MAX1, N ) ) THEN
250          INFO = -7
251       ELSE IF( LDB.LT.MAX1, N ) ) THEN
252          INFO = -9
253       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
254          INFO = -14
255       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
256          INFO = -16
257       END IF
258 *
259 *     Compute workspace
260 *      (Note: Comments in the code beginning "Workspace:" describe the
261 *       minimal amount of workspace needed at that point in the code,
262 *       as well as the preferred amount for good performance.
263 *       NB refers to the optimal block size for the immediately
264 *       following subroutine, as returned by ILAENV.)
265 *
266       IF( INFO.EQ.0 ) THEN
267          LWKMIN = MAX12*N )
268          LWKOPT = MAX1, N + N*ILAENV( 1'ZGEQRF'' ', N, 1, N, 0 ) )
269          LWKOPT = MAX( LWKOPT, N +
270      $                 N*ILAENV( 1'ZUNMQR'' ', N, 1, N, -1 ) )
271          IF( ILVSL ) THEN
272             LWKOPT = MAX( LWKOPT, N +
273      $                    N*ILAENV( 1'ZUNGQR'' ', N, 1, N, -1 ) )
274          END IF
275          WORK( 1 ) = LWKOPT
276 *
277          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY )
278      $      INFO = -18
279       END IF
280 *
281       IF( INFO.NE.0 ) THEN
282          CALL XERBLA( 'ZGGES '-INFO )
283          RETURN
284       ELSE IF( LQUERY ) THEN
285          RETURN
286       END IF
287 *
288 *     Quick return if possible
289 *
290       IF( N.EQ.0 ) THEN
291          SDIM = 0
292          RETURN
293       END IF
294 *
295 *     Get machine constants
296 *
297       EPS = DLAMCH( 'P' )
298       SMLNUM = DLAMCH( 'S' )
299       BIGNUM = ONE / SMLNUM
300       CALL DLABAD( SMLNUM, BIGNUM )
301       SMLNUM = SQRT( SMLNUM ) / EPS
302       BIGNUM = ONE / SMLNUM
303 *
304 *     Scale A if max element outside range [SMLNUM,BIGNUM]
305 *
306       ANRM = ZLANGE( 'M', N, N, A, LDA, RWORK )
307       ILASCL = .FALSE.
308       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
309          ANRMTO = SMLNUM
310          ILASCL = .TRUE.
311       ELSE IF( ANRM.GT.BIGNUM ) THEN
312          ANRMTO = BIGNUM
313          ILASCL = .TRUE.
314       END IF
315 *
316       IF( ILASCL )
317      $   CALL ZLASCL( 'G'00, ANRM, ANRMTO, N, N, A, LDA, IERR )
318 *
319 *     Scale B if max element outside range [SMLNUM,BIGNUM]
320 *
321       BNRM = ZLANGE( 'M', N, N, B, LDB, RWORK )
322       ILBSCL = .FALSE.
323       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
324          BNRMTO = SMLNUM
325          ILBSCL = .TRUE.
326       ELSE IF( BNRM.GT.BIGNUM ) THEN
327          BNRMTO = BIGNUM
328          ILBSCL = .TRUE.
329       END IF
330 *
331       IF( ILBSCL )
332      $   CALL ZLASCL( 'G'00, BNRM, BNRMTO, N, N, B, LDB, IERR )
333 *
334 *     Permute the matrix to make it more nearly triangular
335 *     (Real Workspace: need 6*N)
336 *
337       ILEFT = 1
338       IRIGHT = N + 1
339       IRWRK = IRIGHT + N
340       CALL ZGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ),
341      $             RWORK( IRIGHT ), RWORK( IRWRK ), IERR )
342 *
343 *     Reduce B to triangular form (QR decomposition of B)
344 *     (Complex Workspace: need N, prefer N*NB)
345 *
346       IROWS = IHI + 1 - ILO
347       ICOLS = N + 1 - ILO
348       ITAU = 1
349       IWRK = ITAU + IROWS
350       CALL ZGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
351      $             WORK( IWRK ), LWORK+1-IWRK, IERR )
352 *
353 *     Apply the orthogonal transformation to matrix A
354 *     (Complex Workspace: need N, prefer N*NB)
355 *
356       CALL ZUNMQR( 'L''C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
357      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ),
358      $             LWORK+1-IWRK, IERR )
359 *
360 *     Initialize VSL
361 *     (Complex Workspace: need N, prefer N*NB)
362 *
363       IF( ILVSL ) THEN
364          CALL ZLASET( 'Full', N, N, CZERO, CONE, VSL, LDVSL )
365          IF( IROWS.GT.1 ) THEN
366             CALL ZLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
367      $                   VSL( ILO+1, ILO ), LDVSL )
368          END IF
369          CALL ZUNGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
370      $                WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR )
371       END IF
372 *
373 *     Initialize VSR
374 *
375       IF( ILVSR )
376      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, VSR, LDVSR )
377 *
378 *     Reduce to generalized Hessenberg form
379 *     (Workspace: none needed)
380 *
381       CALL ZGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
382      $             LDVSL, VSR, LDVSR, IERR )
383 *
384       SDIM = 0
385 *
386 *     Perform QZ algorithm, computing Schur vectors if desired
387 *     (Complex Workspace: need N)
388 *     (Real Workspace: need N)
389 *
390       IWRK = ITAU
391       CALL ZHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
392      $             ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK( IWRK ),
393      $             LWORK+1-IWRK, RWORK( IRWRK ), IERR )
394       IF( IERR.NE.0 ) THEN
395          IF( IERR.GT.0 .AND. IERR.LE.N ) THEN
396             INFO = IERR
397          ELSE IF( IERR.GT..AND. IERR.LE.2*N ) THEN
398             INFO = IERR - N
399          ELSE
400             INFO = N + 1
401          END IF
402          GO TO 30
403       END IF
404 *
405 *     Sort eigenvalues ALPHA/BETA if desired
406 *     (Workspace: none needed)
407 *
408       IF( WANTST ) THEN
409 *
410 *        Undo scaling on eigenvalues before selecting
411 *
412          IF( ILASCL )
413      $      CALL ZLASCL( 'G'00, ANRM, ANRMTO, N, 1, ALPHA, N, IERR )
414          IF( ILBSCL )
415      $      CALL ZLASCL( 'G'00, BNRM, BNRMTO, N, 1, BETA, N, IERR )
416 *
417 *        Select eigenvalues
418 *
419          DO 10 I = 1, N
420             BWORK( I ) = SELCTG( ALPHA( I ), BETA( I ) )
421    10    CONTINUE
422 *
423          CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, ALPHA,
424      $                BETA, VSL, LDVSL, VSR, LDVSR, SDIM, PVSL, PVSR,
425      $                DIF, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1, IERR )
426          IF( IERR.EQ.1 )
427      $      INFO = N + 3
428 *
429       END IF
430 *
431 *     Apply back-permutation to VSL and VSR
432 *     (Workspace: none needed)
433 *
434       IF( ILVSL )
435      $   CALL ZGGBAK( 'P''L', N, ILO, IHI, RWORK( ILEFT ),
436      $                RWORK( IRIGHT ), N, VSL, LDVSL, IERR )
437       IF( ILVSR )
438      $   CALL ZGGBAK( 'P''R', N, ILO, IHI, RWORK( ILEFT ),
439      $                RWORK( IRIGHT ), N, VSR, LDVSR, IERR )
440 *
441 *     Undo scaling
442 *
443       IF( ILASCL ) THEN
444          CALL ZLASCL( 'U'00, ANRMTO, ANRM, N, N, A, LDA, IERR )
445          CALL ZLASCL( 'G'00, ANRMTO, ANRM, N, 1, ALPHA, N, IERR )
446       END IF
447 *
448       IF( ILBSCL ) THEN
449          CALL ZLASCL( 'U'00, BNRMTO, BNRM, N, N, B, LDB, IERR )
450          CALL ZLASCL( 'G'00, BNRMTO, BNRM, N, 1, BETA, N, IERR )
451       END IF
452 *
453       IF( WANTST ) THEN
454 *
455 *        Check if reordering is correct
456 *
457          LASTSL = .TRUE.
458          SDIM = 0
459          DO 20 I = 1, N
460             CURSL = SELCTG( ALPHA( I ), BETA( I ) )
461             IF( CURSL )
462      $         SDIM = SDIM + 1
463             IF( CURSL .AND. .NOT.LASTSL )
464      $         INFO = N + 2
465             LASTSL = CURSL
466    20    CONTINUE
467 *
468       END IF
469 *
470    30 CONTINUE
471 *
472       WORK( 1 ) = LWKOPT
473 *
474       RETURN
475 *
476 *     End of ZGGES
477 *
478       END