1       SUBROUTINE ZGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
  2      $                   INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
 14      $                   X( * ), Y( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZGGGLM solves a general Gauss-Markov linear model (GLM) problem:
 21 *
 22 *          minimize || y ||_2   subject to   d = A*x + B*y
 23 *              x
 24 *
 25 *  where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
 26 *  given N-vector. It is assumed that M <= N <= M+P, and
 27 *
 28 *             rank(A) = M    and    rank( A B ) = N.
 29 *
 30 *  Under these assumptions, the constrained equation is always
 31 *  consistent, and there is a unique solution x and a minimal 2-norm
 32 *  solution y, which is obtained using a generalized QR factorization
 33 *  of the matrices (A, B) given by
 34 *
 35 *     A = Q*(R),   B = Q*T*Z.
 36 *           (0)
 37 *
 38 *  In particular, if matrix B is square nonsingular, then the problem
 39 *  GLM is equivalent to the following weighted linear least squares
 40 *  problem
 41 *
 42 *               minimize || inv(B)*(d-A*x) ||_2
 43 *                   x
 44 *
 45 *  where inv(B) denotes the inverse of B.
 46 *
 47 *  Arguments
 48 *  =========
 49 *
 50 *  N       (input) INTEGER
 51 *          The number of rows of the matrices A and B.  N >= 0.
 52 *
 53 *  M       (input) INTEGER
 54 *          The number of columns of the matrix A.  0 <= M <= N.
 55 *
 56 *  P       (input) INTEGER
 57 *          The number of columns of the matrix B.  P >= N-M.
 58 *
 59 *  A       (input/output) COMPLEX*16 array, dimension (LDA,M)
 60 *          On entry, the N-by-M matrix A.
 61 *          On exit, the upper triangular part of the array A contains
 62 *          the M-by-M upper triangular matrix R.
 63 *
 64 *  LDA     (input) INTEGER
 65 *          The leading dimension of the array A. LDA >= max(1,N).
 66 *
 67 *  B       (input/output) COMPLEX*16 array, dimension (LDB,P)
 68 *          On entry, the N-by-P matrix B.
 69 *          On exit, if N <= P, the upper triangle of the subarray
 70 *          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
 71 *          if N > P, the elements on and above the (N-P)th subdiagonal
 72 *          contain the N-by-P upper trapezoidal matrix T.
 73 *
 74 *  LDB     (input) INTEGER
 75 *          The leading dimension of the array B. LDB >= max(1,N).
 76 *
 77 *  D       (input/output) COMPLEX*16 array, dimension (N)
 78 *          On entry, D is the left hand side of the GLM equation.
 79 *          On exit, D is destroyed.
 80 *
 81 *  X       (output) COMPLEX*16 array, dimension (M)
 82 *  Y       (output) COMPLEX*16 array, dimension (P)
 83 *          On exit, X and Y are the solutions of the GLM problem.
 84 *
 85 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 86 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 87 *
 88 *  LWORK   (input) INTEGER
 89 *          The dimension of the array WORK. LWORK >= max(1,N+M+P).
 90 *          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
 91 *          where NB is an upper bound for the optimal blocksizes for
 92 *          ZGEQRF, ZGERQF, ZUNMQR and ZUNMRQ.
 93 *
 94 *          If LWORK = -1, then a workspace query is assumed; the routine
 95 *          only calculates the optimal size of the WORK array, returns
 96 *          this value as the first entry of the WORK array, and no error
 97 *          message related to LWORK is issued by XERBLA.
 98 *
 99 *  INFO    (output) INTEGER
100 *          = 0:  successful exit.
101 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
102 *          = 1:  the upper triangular factor R associated with A in the
103 *                generalized QR factorization of the pair (A, B) is
104 *                singular, so that rank(A) < M; the least squares
105 *                solution could not be computed.
106 *          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
107 *                factor T associated with B in the generalized QR
108 *                factorization of the pair (A, B) is singular, so that
109 *                rank( A B ) < N; the least squares solution could not
110 *                be computed.
111 *
112 *  ===================================================================
113 *
114 *     .. Parameters ..
115       COMPLEX*16         CZERO, CONE
116       PARAMETER          ( CZERO = ( 0.0D+00.0D+0 ),
117      $                   CONE = ( 1.0D+00.0D+0 ) )
118 *     ..
119 *     .. Local Scalars ..
120       LOGICAL            LQUERY
121       INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
122      $                   NB4, NP
123 *     ..
124 *     .. External Subroutines ..
125       EXTERNAL           XERBLA, ZCOPY, ZGEMV, ZGGQRF, ZTRTRS, ZUNMQR,
126      $                   ZUNMRQ
127 *     ..
128 *     .. External Functions ..
129       INTEGER            ILAENV
130       EXTERNAL           ILAENV 
131 *     ..
132 *     .. Intrinsic Functions ..
133       INTRINSIC          INTMAXMIN
134 *     ..
135 *     .. Executable Statements ..
136 *
137 *     Test the input parameters
138 *
139       INFO = 0
140       NP = MIN( N, P )
141       LQUERY = ( LWORK.EQ.-1 )
142       IF( N.LT.0 ) THEN
143          INFO = -1
144       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
145          INFO = -2
146       ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
147          INFO = -3
148       ELSE IF( LDA.LT.MAX1, N ) ) THEN
149          INFO = -5
150       ELSE IF( LDB.LT.MAX1, N ) ) THEN
151          INFO = -7
152       END IF
153 *
154 *     Calculate workspace
155 *
156       IF( INFO.EQ.0THEN
157          IF( N.EQ.0 ) THEN
158             LWKMIN = 1
159             LWKOPT = 1
160          ELSE
161             NB1 = ILAENV( 1'ZGEQRF'' ', N, M, -1-1 )
162             NB2 = ILAENV( 1'ZGERQF'' ', N, M, -1-1 )
163             NB3 = ILAENV( 1'ZUNMQR'' ', N, M, P, -1 )
164             NB4 = ILAENV( 1'ZUNMRQ'' ', N, M, P, -1 )
165             NB = MAX( NB1, NB2, NB3, NB4 )
166             LWKMIN = M + N + P
167             LWKOPT = M + NP + MAX( N, P )*NB
168          END IF
169          WORK( 1 ) = LWKOPT
170 *
171          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
172             INFO = -12
173          END IF
174       END IF
175 *
176       IF( INFO.NE.0 ) THEN
177          CALL XERBLA( 'ZGGGLM'-INFO )
178          RETURN
179       ELSE IF( LQUERY ) THEN
180          RETURN
181       END IF
182 *
183 *     Quick return if possible
184 *
185       IF( N.EQ.0 )
186      $   RETURN
187 *
188 *     Compute the GQR factorization of matrices A and B:
189 *
190 *          Q**H*A = ( R11 ) M,    Q**H*B*Z**H = ( T11   T12 ) M
191 *                   (  0  ) N-M                 (  0    T22 ) N-M
192 *                      M                         M+P-N  N-M
193 *
194 *     where R11 and T22 are upper triangular, and Q and Z are
195 *     unitary.
196 *
197       CALL ZGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
198      $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
199       LOPT = WORK( M+NP+1 )
200 *
201 *     Update left-hand-side vector d = Q**H*d = ( d1 ) M
202 *                                               ( d2 ) N-M
203 *
204       CALL ZUNMQR( 'Left''Conjugate transpose', N, 1, M, A, LDA, WORK,
205      $             D, MAX1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
206       LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
207 *
208 *     Solve T22*y2 = d2 for y2
209 *
210       IF( N.GT.M ) THEN
211          CALL ZTRTRS( 'Upper''No transpose''Non unit', N-M, 1,
212      $                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
213 *
214          IF( INFO.GT.0 ) THEN
215             INFO = 1
216             RETURN
217          END IF
218 *
219          CALL ZCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
220       END IF
221 *
222 *     Set y1 = 0
223 *
224       DO 10 I = 1, M + P - N
225          Y( I ) = CZERO
226    10 CONTINUE
227 *
228 *     Update d1 = d1 - T12*y2
229 *
230       CALL ZGEMV( 'No transpose', M, N-M, -CONE, B( 1, M+P-N+1 ), LDB,
231      $            Y( M+P-N+1 ), 1, CONE, D, 1 )
232 *
233 *     Solve triangular system: R11*x = d1
234 *
235       IF( M.GT.0 ) THEN
236          CALL ZTRTRS( 'Upper''No Transpose''Non unit', M, 1, A, LDA,
237      $                D, M, INFO )
238 *
239          IF( INFO.GT.0 ) THEN
240             INFO = 2
241             RETURN
242          END IF
243 *
244 *        Copy D to X
245 *
246          CALL ZCOPY( M, D, 1, X, 1 )
247       END IF
248 *
249 *     Backward transformation y = Z**H *y
250 *
251       CALL ZUNMRQ( 'Left''Conjugate transpose', P, 1, NP,
252      $             B( MAX1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
253      $             MAX1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
254       WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
255 *
256       RETURN
257 *
258 *     End of ZGGGLM
259 *
260       END