1       SUBROUTINE ZGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
  2      $                   WORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
 10 *
 11 *     .. Scalar Arguments ..
 12       CHARACTER          NORM
 13       INTEGER            INFO, N
 14       DOUBLE PRECISION   ANORM, RCOND
 15 *     ..
 16 *     .. Array Arguments ..
 17       INTEGER            IPIV( * )
 18       COMPLEX*16         D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  ZGTCON estimates the reciprocal of the condition number of a complex
 25 *  tridiagonal matrix A using the LU factorization as computed by
 26 *  ZGTTRF.
 27 *
 28 *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
 29 *  condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 30 *
 31 *  Arguments
 32 *  =========
 33 *
 34 *  NORM    (input) CHARACTER*1
 35 *          Specifies whether the 1-norm condition number or the
 36 *          infinity-norm condition number is required:
 37 *          = '1' or 'O':  1-norm;
 38 *          = 'I':         Infinity-norm.
 39 *
 40 *  N       (input) INTEGER
 41 *          The order of the matrix A.  N >= 0.
 42 *
 43 *  DL      (input) COMPLEX*16 array, dimension (N-1)
 44 *          The (n-1) multipliers that define the matrix L from the
 45 *          LU factorization of A as computed by ZGTTRF.
 46 *
 47 *  D       (input) COMPLEX*16 array, dimension (N)
 48 *          The n diagonal elements of the upper triangular matrix U from
 49 *          the LU factorization of A.
 50 *
 51 *  DU      (input) COMPLEX*16 array, dimension (N-1)
 52 *          The (n-1) elements of the first superdiagonal of U.
 53 *
 54 *  DU2     (input) COMPLEX*16 array, dimension (N-2)
 55 *          The (n-2) elements of the second superdiagonal of U.
 56 *
 57 *  IPIV    (input) INTEGER array, dimension (N)
 58 *          The pivot indices; for 1 <= i <= n, row i of the matrix was
 59 *          interchanged with row IPIV(i).  IPIV(i) will always be either
 60 *          i or i+1; IPIV(i) = i indicates a row interchange was not
 61 *          required.
 62 *
 63 *  ANORM   (input) DOUBLE PRECISION
 64 *          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 65 *          If NORM = 'I', the infinity-norm of the original matrix A.
 66 *
 67 *  RCOND   (output) DOUBLE PRECISION
 68 *          The reciprocal of the condition number of the matrix A,
 69 *          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 70 *          estimate of the 1-norm of inv(A) computed in this routine.
 71 *
 72 *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
 73 *
 74 *  INFO    (output) INTEGER
 75 *          = 0:  successful exit
 76 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 77 *
 78 *  =====================================================================
 79 *
 80 *     .. Parameters ..
 81       DOUBLE PRECISION   ONE, ZERO
 82       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 83 *     ..
 84 *     .. Local Scalars ..
 85       LOGICAL            ONENRM
 86       INTEGER            I, KASE, KASE1
 87       DOUBLE PRECISION   AINVNM
 88 *     ..
 89 *     .. Local Arrays ..
 90       INTEGER            ISAVE( 3 )
 91 *     ..
 92 *     .. External Functions ..
 93       LOGICAL            LSAME
 94       EXTERNAL           LSAME
 95 *     ..
 96 *     .. External Subroutines ..
 97       EXTERNAL           XERBLA, ZGTTRS, ZLACN2
 98 *     ..
 99 *     .. Intrinsic Functions ..
100       INTRINSIC          DCMPLX
101 *     ..
102 *     .. Executable Statements ..
103 *
104 *     Test the input arguments.
105 *
106       INFO = 0
107       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
108       IF.NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
109          INFO = -1
110       ELSE IF( N.LT.0 ) THEN
111          INFO = -2
112       ELSE IF( ANORM.LT.ZERO ) THEN
113          INFO = -8
114       END IF
115       IF( INFO.NE.0 ) THEN
116          CALL XERBLA( 'ZGTCON'-INFO )
117          RETURN
118       END IF
119 *
120 *     Quick return if possible
121 *
122       RCOND = ZERO
123       IF( N.EQ.0 ) THEN
124          RCOND = ONE
125          RETURN
126       ELSE IF( ANORM.EQ.ZERO ) THEN
127          RETURN
128       END IF
129 *
130 *     Check that D(1:N) is non-zero.
131 *
132       DO 10 I = 1, N
133          IF( D( I ).EQ.DCMPLX( ZERO ) )
134      $      RETURN
135    10 CONTINUE
136 *
137       AINVNM = ZERO
138       IF( ONENRM ) THEN
139          KASE1 = 1
140       ELSE
141          KASE1 = 2
142       END IF
143       KASE = 0
144    20 CONTINUE
145       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
146       IF( KASE.NE.0 ) THEN
147          IF( KASE.EQ.KASE1 ) THEN
148 *
149 *           Multiply by inv(U)*inv(L).
150 *
151             CALL ZGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
152      $                   WORK, N, INFO )
153          ELSE
154 *
155 *           Multiply by inv(L**H)*inv(U**H).
156 *
157             CALL ZGTTRS( 'Conjugate transpose', N, 1, DL, D, DU, DU2,
158      $                   IPIV, WORK, N, INFO )
159          END IF
160          GO TO 20
161       END IF
162 *
163 *     Compute the estimate of the reciprocal condition number.
164 *
165       IF( AINVNM.NE.ZERO )
166      $   RCOND = ( ONE / AINVNM ) / ANORM
167 *
168       RETURN
169 *
170 *     End of ZGTCON
171 *
172       END