1       SUBROUTINE ZGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            INFO, LDB, N, NRHS
 10 *     ..
 11 *     .. Array Arguments ..
 12       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * )
 13 *     ..
 14 *
 15 *  Purpose
 16 *  =======
 17 *
 18 *  ZGTSV  solves the equation
 19 *
 20 *     A*X = B,
 21 *
 22 *  where A is an N-by-N tridiagonal matrix, by Gaussian elimination with
 23 *  partial pivoting.
 24 *
 25 *  Note that the equation  A**H *X = B  may be solved by interchanging the
 26 *  order of the arguments DU and DL.
 27 *
 28 *  Arguments
 29 *  =========
 30 *
 31 *  N       (input) INTEGER
 32 *          The order of the matrix A.  N >= 0.
 33 *
 34 *  NRHS    (input) INTEGER
 35 *          The number of right hand sides, i.e., the number of columns
 36 *          of the matrix B.  NRHS >= 0.
 37 *
 38 *  DL      (input/output) COMPLEX*16 array, dimension (N-1)
 39 *          On entry, DL must contain the (n-1) subdiagonal elements of
 40 *          A.
 41 *          On exit, DL is overwritten by the (n-2) elements of the
 42 *          second superdiagonal of the upper triangular matrix U from
 43 *          the LU factorization of A, in DL(1), ..., DL(n-2).
 44 *
 45 *  D       (input/output) COMPLEX*16 array, dimension (N)
 46 *          On entry, D must contain the diagonal elements of A.
 47 *          On exit, D is overwritten by the n diagonal elements of U.
 48 *
 49 *  DU      (input/output) COMPLEX*16 array, dimension (N-1)
 50 *          On entry, DU must contain the (n-1) superdiagonal elements
 51 *          of A.
 52 *          On exit, DU is overwritten by the (n-1) elements of the first
 53 *          superdiagonal of U.
 54 *
 55 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 56 *          On entry, the N-by-NRHS right hand side matrix B.
 57 *          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
 58 *
 59 *  LDB     (input) INTEGER
 60 *          The leading dimension of the array B.  LDB >= max(1,N).
 61 *
 62 *  INFO    (output) INTEGER
 63 *          = 0:  successful exit
 64 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 65 *          > 0:  if INFO = i, U(i,i) is exactly zero, and the solution
 66 *                has not been computed.  The factorization has not been
 67 *                completed unless i = N.
 68 *
 69 *  =====================================================================
 70 *
 71 *     .. Parameters ..
 72       COMPLEX*16         ZERO
 73       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ) )
 74 *     ..
 75 *     .. Local Scalars ..
 76       INTEGER            J, K
 77       COMPLEX*16         MULT, TEMP, ZDUM
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          ABSDBLEDIMAGMAX
 81 *     ..
 82 *     .. External Subroutines ..
 83       EXTERNAL           XERBLA
 84 *     ..
 85 *     .. Statement Functions ..
 86       DOUBLE PRECISION   CABS1
 87 *     ..
 88 *     .. Statement Function definitions ..
 89       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
 90 *     ..
 91 *     .. Executable Statements ..
 92 *
 93       INFO = 0
 94       IF( N.LT.0 ) THEN
 95          INFO = -1
 96       ELSE IF( NRHS.LT.0 ) THEN
 97          INFO = -2
 98       ELSE IF( LDB.LT.MAX1, N ) ) THEN
 99          INFO = -7
100       END IF
101       IF( INFO.NE.0 ) THEN
102          CALL XERBLA( 'ZGTSV '-INFO )
103          RETURN
104       END IF
105 *
106       IF( N.EQ.0 )
107      $   RETURN
108 *
109       DO 30 K = 1, N - 1
110          IF( DL( K ).EQ.ZERO ) THEN
111 *
112 *           Subdiagonal is zero, no elimination is required.
113 *
114             IF( D( K ).EQ.ZERO ) THEN
115 *
116 *              Diagonal is zero: set INFO = K and return; a unique
117 *              solution can not be found.
118 *
119                INFO = K
120                RETURN
121             END IF
122          ELSE IF( CABS1( D( K ) ).GE.CABS1( DL( K ) ) ) THEN
123 *
124 *           No row interchange required
125 *
126             MULT = DL( K ) / D( K )
127             D( K+1 ) = D( K+1 ) - MULT*DU( K )
128             DO 10 J = 1, NRHS
129                B( K+1, J ) = B( K+1, J ) - MULT*B( K, J )
130    10       CONTINUE
131             IF( K.LT.( N-1 ) )
132      $         DL( K ) = ZERO
133          ELSE
134 *
135 *           Interchange rows K and K+1
136 *
137             MULT = D( K ) / DL( K )
138             D( K ) = DL( K )
139             TEMP = D( K+1 )
140             D( K+1 ) = DU( K ) - MULT*TEMP
141             IF( K.LT.( N-1 ) ) THEN
142                DL( K ) = DU( K+1 )
143                DU( K+1 ) = -MULT*DL( K )
144             END IF
145             DU( K ) = TEMP
146             DO 20 J = 1, NRHS
147                TEMP = B( K, J )
148                B( K, J ) = B( K+1, J )
149                B( K+1, J ) = TEMP - MULT*B( K+1, J )
150    20       CONTINUE
151          END IF
152    30 CONTINUE
153       IF( D( N ).EQ.ZERO ) THEN
154          INFO = N
155          RETURN
156       END IF
157 *
158 *     Back solve with the matrix U from the factorization.
159 *
160       DO 50 J = 1, NRHS
161          B( N, J ) = B( N, J ) / D( N )
162          IF( N.GT.1 )
163      $      B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
164          DO 40 K = N - 21-1
165             B( K, J ) = ( B( K, J )-DU( K )*B( K+1, J )-DL( K )*
166      $                  B( K+2, J ) ) / D( K )
167    40    CONTINUE
168    50 CONTINUE
169 *
170       RETURN
171 *
172 *     End of ZGTSV
173 *
174       END