1       SUBROUTINE ZHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
  2      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   RWORK( * ), W( * )
 16       COMPLEX*16         AB( LDAB, * ), WORK( * ), Z( LDZ, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of
 23 *  a complex Hermitian band matrix A.  If eigenvectors are desired, it
 24 *  uses a divide and conquer algorithm.
 25 *
 26 *  The divide and conquer algorithm makes very mild assumptions about
 27 *  floating point arithmetic. It will work on machines with a guard
 28 *  digit in add/subtract, or on those binary machines without guard
 29 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 30 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 31 *  without guard digits, but we know of none.
 32 *
 33 *  Arguments
 34 *  =========
 35 *
 36 *  JOBZ    (input) CHARACTER*1
 37 *          = 'N':  Compute eigenvalues only;
 38 *          = 'V':  Compute eigenvalues and eigenvectors.
 39 *
 40 *  UPLO    (input) CHARACTER*1
 41 *          = 'U':  Upper triangle of A is stored;
 42 *          = 'L':  Lower triangle of A is stored.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrix A.  N >= 0.
 46 *
 47 *  KD      (input) INTEGER
 48 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 49 *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 50 *
 51 *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
 52 *          On entry, the upper or lower triangle of the Hermitian band
 53 *          matrix A, stored in the first KD+1 rows of the array.  The
 54 *          j-th column of A is stored in the j-th column of the array AB
 55 *          as follows:
 56 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 57 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 58 *
 59 *          On exit, AB is overwritten by values generated during the
 60 *          reduction to tridiagonal form.  If UPLO = 'U', the first
 61 *          superdiagonal and the diagonal of the tridiagonal matrix T
 62 *          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
 63 *          the diagonal and first subdiagonal of T are returned in the
 64 *          first two rows of AB.
 65 *
 66 *  LDAB    (input) INTEGER
 67 *          The leading dimension of the array AB.  LDAB >= KD + 1.
 68 *
 69 *  W       (output) DOUBLE PRECISION array, dimension (N)
 70 *          If INFO = 0, the eigenvalues in ascending order.
 71 *
 72 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
 73 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 74 *          eigenvectors of the matrix A, with the i-th column of Z
 75 *          holding the eigenvector associated with W(i).
 76 *          If JOBZ = 'N', then Z is not referenced.
 77 *
 78 *  LDZ     (input) INTEGER
 79 *          The leading dimension of the array Z.  LDZ >= 1, and if
 80 *          JOBZ = 'V', LDZ >= max(1,N).
 81 *
 82 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 83 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 84 *
 85 *  LWORK   (input) INTEGER
 86 *          The dimension of the array WORK.
 87 *          If N <= 1,               LWORK must be at least 1.
 88 *          If JOBZ = 'N' and N > 1, LWORK must be at least N.
 89 *          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
 90 *
 91 *          If LWORK = -1, then a workspace query is assumed; the routine
 92 *          only calculates the optimal sizes of the WORK, RWORK and
 93 *          IWORK arrays, returns these values as the first entries of
 94 *          the WORK, RWORK and IWORK arrays, and no error message
 95 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 96 *
 97 *  RWORK   (workspace/output) DOUBLE PRECISION array,
 98 *                                         dimension (LRWORK)
 99 *          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
100 *
101 *  LRWORK  (input) INTEGER
102 *          The dimension of array RWORK.
103 *          If N <= 1,               LRWORK must be at least 1.
104 *          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
105 *          If JOBZ = 'V' and N > 1, LRWORK must be at least
106 *                        1 + 5*N + 2*N**2.
107 *
108 *          If LRWORK = -1, then a workspace query is assumed; the
109 *          routine only calculates the optimal sizes of the WORK, RWORK
110 *          and IWORK arrays, returns these values as the first entries
111 *          of the WORK, RWORK and IWORK arrays, and no error message
112 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
113 *
114 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
115 *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
116 *
117 *  LIWORK  (input) INTEGER
118 *          The dimension of array IWORK.
119 *          If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
120 *          If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
121 *
122 *          If LIWORK = -1, then a workspace query is assumed; the
123 *          routine only calculates the optimal sizes of the WORK, RWORK
124 *          and IWORK arrays, returns these values as the first entries
125 *          of the WORK, RWORK and IWORK arrays, and no error message
126 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
127 *
128 *  INFO    (output) INTEGER
129 *          = 0:  successful exit.
130 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
131 *          > 0:  if INFO = i, the algorithm failed to converge; i
132 *                off-diagonal elements of an intermediate tridiagonal
133 *                form did not converge to zero.
134 *
135 *  =====================================================================
136 *
137 *     .. Parameters ..
138       DOUBLE PRECISION   ZERO, ONE
139       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
140       COMPLEX*16         CZERO, CONE
141       PARAMETER          ( CZERO = ( 0.0D00.0D0 ),
142      $                   CONE = ( 1.0D00.0D0 ) )
143 *     ..
144 *     .. Local Scalars ..
145       LOGICAL            LOWER, LQUERY, WANTZ
146       INTEGER            IINFO, IMAX, INDE, INDWK2, INDWRK, ISCALE,
147      $                   LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
148       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
149      $                   SMLNUM
150 *     ..
151 *     .. External Functions ..
152       LOGICAL            LSAME
153       DOUBLE PRECISION   DLAMCH, ZLANHB
154       EXTERNAL           LSAME, DLAMCH, ZLANHB
155 *     ..
156 *     .. External Subroutines ..
157       EXTERNAL           DSCAL, DSTERF, XERBLA, ZGEMM, ZHBTRD, ZLACPY,
158      $                   ZLASCL, ZSTEDC
159 *     ..
160 *     .. Intrinsic Functions ..
161       INTRINSIC          SQRT
162 *     ..
163 *     .. Executable Statements ..
164 *
165 *     Test the input parameters.
166 *
167       WANTZ = LSAME( JOBZ, 'V' )
168       LOWER = LSAME( UPLO, 'L' )
169       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
170 *
171       INFO = 0
172       IF( N.LE.1 ) THEN
173          LWMIN = 1
174          LRWMIN = 1
175          LIWMIN = 1
176       ELSE
177          IF( WANTZ ) THEN
178             LWMIN = 2*N**2
179             LRWMIN = 1 + 5*+ 2*N**2
180             LIWMIN = 3 + 5*N
181          ELSE
182             LWMIN = N
183             LRWMIN = N
184             LIWMIN = 1
185          END IF
186       END IF
187       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
188          INFO = -1
189       ELSE IF.NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
190          INFO = -2
191       ELSE IF( N.LT.0 ) THEN
192          INFO = -3
193       ELSE IF( KD.LT.0 ) THEN
194          INFO = -4
195       ELSE IF( LDAB.LT.KD+1 ) THEN
196          INFO = -6
197       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
198          INFO = -9
199       END IF
200 *
201       IF( INFO.EQ.0 ) THEN
202          WORK( 1 ) = LWMIN
203          RWORK( 1 ) = LRWMIN
204          IWORK( 1 ) = LIWMIN
205 *
206          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
207             INFO = -11
208          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
209             INFO = -13
210          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
211             INFO = -15
212          END IF
213       END IF
214 *
215       IF( INFO.NE.0 ) THEN
216          CALL XERBLA( 'ZHBEVD'-INFO )
217          RETURN
218       ELSE IF( LQUERY ) THEN
219          RETURN
220       END IF
221 *
222 *     Quick return if possible
223 *
224       IF( N.EQ.0 )
225      $   RETURN
226 *
227       IF( N.EQ.1 ) THEN
228          W( 1 ) = AB( 11 )
229          IF( WANTZ )
230      $      Z( 11 ) = CONE
231          RETURN
232       END IF
233 *
234 *     Get machine constants.
235 *
236       SAFMIN = DLAMCH( 'Safe minimum' )
237       EPS = DLAMCH( 'Precision' )
238       SMLNUM = SAFMIN / EPS
239       BIGNUM = ONE / SMLNUM
240       RMIN = SQRT( SMLNUM )
241       RMAX = SQRT( BIGNUM )
242 *
243 *     Scale matrix to allowable range, if necessary.
244 *
245       ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
246       ISCALE = 0
247       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
248          ISCALE = 1
249          SIGMA = RMIN / ANRM
250       ELSE IF( ANRM.GT.RMAX ) THEN
251          ISCALE = 1
252          SIGMA = RMAX / ANRM
253       END IF
254       IF( ISCALE.EQ.1 ) THEN
255          IF( LOWER ) THEN
256             CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
257          ELSE
258             CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
259          END IF
260       END IF
261 *
262 *     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form.
263 *
264       INDE = 1
265       INDWRK = INDE + N
266       INDWK2 = 1 + N*N
267       LLWK2 = LWORK - INDWK2 + 1
268       LLRWK = LRWORK - INDWRK + 1
269       CALL ZHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z,
270      $             LDZ, WORK, IINFO )
271 *
272 *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEDC.
273 *
274       IF.NOT.WANTZ ) THEN
275          CALL DSTERF( N, W, RWORK( INDE ), INFO )
276       ELSE
277          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
278      $                LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
279      $                INFO )
280          CALL ZGEMM( 'N''N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
281      $               WORK( INDWK2 ), N )
282          CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
283       END IF
284 *
285 *     If matrix was scaled, then rescale eigenvalues appropriately.
286 *
287       IF( ISCALE.EQ.1 ) THEN
288          IF( INFO.EQ.0 ) THEN
289             IMAX = N
290          ELSE
291             IMAX = INFO - 1
292          END IF
293          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
294       END IF
295 *
296       WORK( 1 ) = LWMIN
297       RWORK( 1 ) = LRWMIN
298       IWORK( 1 ) = LIWMIN
299       RETURN
300 *
301 *     End of ZHBEVD
302 *
303       END