1       SUBROUTINE ZHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
  2      $                  LDZ, WORK, RWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * ), W( * )
 15       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
 16      $                   Z( LDZ, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZHBGV computes all the eigenvalues, and optionally, the eigenvectors
 23 *  of a complex generalized Hermitian-definite banded eigenproblem, of
 24 *  the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
 25 *  and banded, and B is also positive definite.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  JOBZ    (input) CHARACTER*1
 31 *          = 'N':  Compute eigenvalues only;
 32 *          = 'V':  Compute eigenvalues and eigenvectors.
 33 *
 34 *  UPLO    (input) CHARACTER*1
 35 *          = 'U':  Upper triangles of A and B are stored;
 36 *          = 'L':  Lower triangles of A and B are stored.
 37 *
 38 *  N       (input) INTEGER
 39 *          The order of the matrices A and B.  N >= 0.
 40 *
 41 *  KA      (input) INTEGER
 42 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 43 *          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
 44 *
 45 *  KB      (input) INTEGER
 46 *          The number of superdiagonals of the matrix B if UPLO = 'U',
 47 *          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
 48 *
 49 *  AB      (input/output) COMPLEX*16 array, dimension (LDAB, N)
 50 *          On entry, the upper or lower triangle of the Hermitian band
 51 *          matrix A, stored in the first ka+1 rows of the array.  The
 52 *          j-th column of A is stored in the j-th column of the array AB
 53 *          as follows:
 54 *          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
 55 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
 56 *
 57 *          On exit, the contents of AB are destroyed.
 58 *
 59 *  LDAB    (input) INTEGER
 60 *          The leading dimension of the array AB.  LDAB >= KA+1.
 61 *
 62 *  BB      (input/output) COMPLEX*16 array, dimension (LDBB, N)
 63 *          On entry, the upper or lower triangle of the Hermitian band
 64 *          matrix B, stored in the first kb+1 rows of the array.  The
 65 *          j-th column of B is stored in the j-th column of the array BB
 66 *          as follows:
 67 *          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
 68 *          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
 69 *
 70 *          On exit, the factor S from the split Cholesky factorization
 71 *          B = S**H*S, as returned by ZPBSTF.
 72 *
 73 *  LDBB    (input) INTEGER
 74 *          The leading dimension of the array BB.  LDBB >= KB+1.
 75 *
 76 *  W       (output) DOUBLE PRECISION array, dimension (N)
 77 *          If INFO = 0, the eigenvalues in ascending order.
 78 *
 79 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
 80 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 81 *          eigenvectors, with the i-th column of Z holding the
 82 *          eigenvector associated with W(i). The eigenvectors are
 83 *          normalized so that Z**H*B*Z = I.
 84 *          If JOBZ = 'N', then Z is not referenced.
 85 *
 86 *  LDZ     (input) INTEGER
 87 *          The leading dimension of the array Z.  LDZ >= 1, and if
 88 *          JOBZ = 'V', LDZ >= N.
 89 *
 90 *  WORK    (workspace) COMPLEX*16 array, dimension (N)
 91 *
 92 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (3*N)
 93 *
 94 *  INFO    (output) INTEGER
 95 *          = 0:  successful exit
 96 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 97 *          > 0:  if INFO = i, and i is:
 98 *             <= N:  the algorithm failed to converge:
 99 *                    i off-diagonal elements of an intermediate
100 *                    tridiagonal form did not converge to zero;
101 *             > N:   if INFO = N + i, for 1 <= i <= N, then ZPBSTF
102 *                    returned INFO = i: B is not positive definite.
103 *                    The factorization of B could not be completed and
104 *                    no eigenvalues or eigenvectors were computed.
105 *
106 *  =====================================================================
107 *
108 *     .. Local Scalars ..
109       LOGICAL            UPPER, WANTZ
110       CHARACTER          VECT
111       INTEGER            IINFO, INDE, INDWRK
112 *     ..
113 *     .. External Functions ..
114       LOGICAL            LSAME
115       EXTERNAL           LSAME
116 *     ..
117 *     .. External Subroutines ..
118       EXTERNAL           DSTERF, XERBLA, ZHBGST, ZHBTRD, ZPBSTF, ZSTEQR
119 *     ..
120 *     .. Executable Statements ..
121 *
122 *     Test the input parameters.
123 *
124       WANTZ = LSAME( JOBZ, 'V' )
125       UPPER = LSAME( UPLO, 'U' )
126 *
127       INFO = 0
128       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
129          INFO = -1
130       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
131          INFO = -2
132       ELSE IF( N.LT.0 ) THEN
133          INFO = -3
134       ELSE IF( KA.LT.0 ) THEN
135          INFO = -4
136       ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
137          INFO = -5
138       ELSE IF( LDAB.LT.KA+1 ) THEN
139          INFO = -7
140       ELSE IF( LDBB.LT.KB+1 ) THEN
141          INFO = -9
142       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
143          INFO = -12
144       END IF
145       IF( INFO.NE.0 ) THEN
146          CALL XERBLA( 'ZHBGV '-INFO )
147          RETURN
148       END IF
149 *
150 *     Quick return if possible
151 *
152       IF( N.EQ.0 )
153      $   RETURN
154 *
155 *     Form a split Cholesky factorization of B.
156 *
157       CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
158       IF( INFO.NE.0 ) THEN
159          INFO = N + INFO
160          RETURN
161       END IF
162 *
163 *     Transform problem to standard eigenvalue problem.
164 *
165       INDE = 1
166       INDWRK = INDE + N
167       CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
168      $             WORK, RWORK( INDWRK ), IINFO )
169 *
170 *     Reduce to tridiagonal form.
171 *
172       IF( WANTZ ) THEN
173          VECT = 'U'
174       ELSE
175          VECT = 'N'
176       END IF
177       CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
178      $             LDZ, WORK, IINFO )
179 *
180 *     For eigenvalues only, call DSTERF.  For eigenvectors, call ZSTEQR.
181 *
182       IF.NOT.WANTZ ) THEN
183          CALL DSTERF( N, W, RWORK( INDE ), INFO )
184       ELSE
185          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
186      $                RWORK( INDWRK ), INFO )
187       END IF
188       RETURN
189 *
190 *     End of ZHBGV
191 *
192       END