1       SUBROUTINE ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
  2      $                  INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, LDA, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * ), W( * )
 15       COMPLEX*16         A( LDA, * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZHEEV computes all eigenvalues and, optionally, eigenvectors of a
 22 *  complex Hermitian matrix A.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  JOBZ    (input) CHARACTER*1
 28 *          = 'N':  Compute eigenvalues only;
 29 *          = 'V':  Compute eigenvalues and eigenvectors.
 30 *
 31 *  UPLO    (input) CHARACTER*1
 32 *          = 'U':  Upper triangle of A is stored;
 33 *          = 'L':  Lower triangle of A is stored.
 34 *
 35 *  N       (input) INTEGER
 36 *          The order of the matrix A.  N >= 0.
 37 *
 38 *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
 39 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 40 *          leading N-by-N upper triangular part of A contains the
 41 *          upper triangular part of the matrix A.  If UPLO = 'L',
 42 *          the leading N-by-N lower triangular part of A contains
 43 *          the lower triangular part of the matrix A.
 44 *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 45 *          orthonormal eigenvectors of the matrix A.
 46 *          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
 47 *          or the upper triangle (if UPLO='U') of A, including the
 48 *          diagonal, is destroyed.
 49 *
 50 *  LDA     (input) INTEGER
 51 *          The leading dimension of the array A.  LDA >= max(1,N).
 52 *
 53 *  W       (output) DOUBLE PRECISION array, dimension (N)
 54 *          If INFO = 0, the eigenvalues in ascending order.
 55 *
 56 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 57 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 58 *
 59 *  LWORK   (input) INTEGER
 60 *          The length of the array WORK.  LWORK >= max(1,2*N-1).
 61 *          For optimal efficiency, LWORK >= (NB+1)*N,
 62 *          where NB is the blocksize for ZHETRD returned by ILAENV.
 63 *
 64 *          If LWORK = -1, then a workspace query is assumed; the routine
 65 *          only calculates the optimal size of the WORK array, returns
 66 *          this value as the first entry of the WORK array, and no error
 67 *          message related to LWORK is issued by XERBLA.
 68 *
 69 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
 70 *
 71 *  INFO    (output) INTEGER
 72 *          = 0:  successful exit
 73 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 74 *          > 0:  if INFO = i, the algorithm failed to converge; i
 75 *                off-diagonal elements of an intermediate tridiagonal
 76 *                form did not converge to zero.
 77 *
 78 *  =====================================================================
 79 *
 80 *     .. Parameters ..
 81       DOUBLE PRECISION   ZERO, ONE
 82       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 83       COMPLEX*16         CONE
 84       PARAMETER          ( CONE = ( 1.0D00.0D0 ) )
 85 *     ..
 86 *     .. Local Scalars ..
 87       LOGICAL            LOWER, LQUERY, WANTZ
 88       INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
 89      $                   LLWORK, LWKOPT, NB
 90       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 91      $                   SMLNUM
 92 *     ..
 93 *     .. External Functions ..
 94       LOGICAL            LSAME
 95       INTEGER            ILAENV
 96       DOUBLE PRECISION   DLAMCH, ZLANHE
 97       EXTERNAL           LSAME, ILAENV, DLAMCH, ZLANHE
 98 *     ..
 99 *     .. External Subroutines ..
100       EXTERNAL           DSCAL, DSTERF, XERBLA, ZHETRD, ZLASCL, ZSTEQR,
101      $                   ZUNGTR
102 *     ..
103 *     .. Intrinsic Functions ..
104       INTRINSIC          MAXSQRT
105 *     ..
106 *     .. Executable Statements ..
107 *
108 *     Test the input parameters.
109 *
110       WANTZ = LSAME( JOBZ, 'V' )
111       LOWER = LSAME( UPLO, 'L' )
112       LQUERY = ( LWORK.EQ.-1 )
113 *
114       INFO = 0
115       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
116          INFO = -1
117       ELSE IF.NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
118          INFO = -2
119       ELSE IF( N.LT.0 ) THEN
120          INFO = -3
121       ELSE IF( LDA.LT.MAX1, N ) ) THEN
122          INFO = -5
123       END IF
124 *
125       IF( INFO.EQ.0 ) THEN
126          NB = ILAENV( 1'ZHETRD', UPLO, N, -1-1-1 )
127          LWKOPT = MAX1, ( NB+1 )*N )
128          WORK( 1 ) = LWKOPT
129 *
130          IF( LWORK.LT.MAX12*N-1 ) .AND. .NOT.LQUERY )
131      $      INFO = -8
132       END IF
133 *
134       IF( INFO.NE.0 ) THEN
135          CALL XERBLA( 'ZHEEV '-INFO )
136          RETURN
137       ELSE IF( LQUERY ) THEN
138          RETURN
139       END IF
140 *
141 *     Quick return if possible
142 *
143       IF( N.EQ.0 ) THEN
144          RETURN
145       END IF
146 *
147       IF( N.EQ.1 ) THEN
148          W( 1 ) = A( 11 )
149          WORK( 1 ) = 1
150          IF( WANTZ )
151      $      A( 11 ) = CONE
152          RETURN
153       END IF
154 *
155 *     Get machine constants.
156 *
157       SAFMIN = DLAMCH( 'Safe minimum' )
158       EPS = DLAMCH( 'Precision' )
159       SMLNUM = SAFMIN / EPS
160       BIGNUM = ONE / SMLNUM
161       RMIN = SQRT( SMLNUM )
162       RMAX = SQRT( BIGNUM )
163 *
164 *     Scale matrix to allowable range, if necessary.
165 *
166       ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
167       ISCALE = 0
168       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
169          ISCALE = 1
170          SIGMA = RMIN / ANRM
171       ELSE IF( ANRM.GT.RMAX ) THEN
172          ISCALE = 1
173          SIGMA = RMAX / ANRM
174       END IF
175       IF( ISCALE.EQ.1 )
176      $   CALL ZLASCL( UPLO, 00, ONE, SIGMA, N, N, A, LDA, INFO )
177 *
178 *     Call ZHETRD to reduce Hermitian matrix to tridiagonal form.
179 *
180       INDE = 1
181       INDTAU = 1
182       INDWRK = INDTAU + N
183       LLWORK = LWORK - INDWRK + 1
184       CALL ZHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
185      $             WORK( INDWRK ), LLWORK, IINFO )
186 *
187 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
188 *     ZUNGTR to generate the unitary matrix, then call ZSTEQR.
189 *
190       IF.NOT.WANTZ ) THEN
191          CALL DSTERF( N, W, RWORK( INDE ), INFO )
192       ELSE
193          CALL ZUNGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
194      $                LLWORK, IINFO )
195          INDWRK = INDE + N
196          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), A, LDA,
197      $                RWORK( INDWRK ), INFO )
198       END IF
199 *
200 *     If matrix was scaled, then rescale eigenvalues appropriately.
201 *
202       IF( ISCALE.EQ.1 ) THEN
203          IF( INFO.EQ.0 ) THEN
204             IMAX = N
205          ELSE
206             IMAX = INFO - 1
207          END IF
208          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
209       END IF
210 *
211 *     Set WORK(1) to optimal complex workspace size.
212 *
213       WORK( 1 ) = LWKOPT
214 *
215       RETURN
216 *
217 *     End of ZHEEV
218 *
219       END