1       SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, ITYPE, LDA, LDB, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * ), B( LDB, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZHEGS2 reduces a complex Hermitian-definite generalized
 20 *  eigenproblem to standard form.
 21 *
 22 *  If ITYPE = 1, the problem is A*x = lambda*B*x,
 23 *  and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
 24 *
 25 *  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 26 *  B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
 27 *
 28 *  B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  ITYPE   (input) INTEGER
 34 *          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
 35 *          = 2 or 3: compute U*A*U**H or L**H *A*L.
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          Specifies whether the upper or lower triangular part of the
 39 *          Hermitian matrix A is stored, and how B has been factorized.
 40 *          = 'U':  Upper triangular
 41 *          = 'L':  Lower triangular
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrices A and B.  N >= 0.
 45 *
 46 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 47 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 48 *          n by n upper triangular part of A contains the upper
 49 *          triangular part of the matrix A, and the strictly lower
 50 *          triangular part of A is not referenced.  If UPLO = 'L', the
 51 *          leading n by n lower triangular part of A contains the lower
 52 *          triangular part of the matrix A, and the strictly upper
 53 *          triangular part of A is not referenced.
 54 *
 55 *          On exit, if INFO = 0, the transformed matrix, stored in the
 56 *          same format as A.
 57 *
 58 *  LDA     (input) INTEGER
 59 *          The leading dimension of the array A.  LDA >= max(1,N).
 60 *
 61 *  B       (input) COMPLEX*16 array, dimension (LDB,N)
 62 *          The triangular factor from the Cholesky factorization of B,
 63 *          as returned by ZPOTRF.
 64 *
 65 *  LDB     (input) INTEGER
 66 *          The leading dimension of the array B.  LDB >= max(1,N).
 67 *
 68 *  INFO    (output) INTEGER
 69 *          = 0:  successful exit.
 70 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 71 *
 72 *  =====================================================================
 73 *
 74 *     .. Parameters ..
 75       DOUBLE PRECISION   ONE, HALF
 76       PARAMETER          ( ONE = 1.0D+0, HALF = 0.5D+0 )
 77       COMPLEX*16         CONE
 78       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
 79 *     ..
 80 *     .. Local Scalars ..
 81       LOGICAL            UPPER
 82       INTEGER            K
 83       DOUBLE PRECISION   AKK, BKK
 84       COMPLEX*16         CT
 85 *     ..
 86 *     .. External Subroutines ..
 87       EXTERNAL           XERBLA, ZAXPY, ZDSCAL, ZHER2, ZLACGV, ZTRMV,
 88      $                   ZTRSV
 89 *     ..
 90 *     .. Intrinsic Functions ..
 91       INTRINSIC          MAX
 92 *     ..
 93 *     .. External Functions ..
 94       LOGICAL            LSAME
 95       EXTERNAL           LSAME
 96 *     ..
 97 *     .. Executable Statements ..
 98 *
 99 *     Test the input parameters.
100 *
101       INFO = 0
102       UPPER = LSAME( UPLO, 'U' )
103       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
104          INFO = -1
105       ELSE IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
106          INFO = -2
107       ELSE IF( N.LT.0 ) THEN
108          INFO = -3
109       ELSE IF( LDA.LT.MAX1, N ) ) THEN
110          INFO = -5
111       ELSE IF( LDB.LT.MAX1, N ) ) THEN
112          INFO = -7
113       END IF
114       IF( INFO.NE.0 ) THEN
115          CALL XERBLA( 'ZHEGS2'-INFO )
116          RETURN
117       END IF
118 *
119       IF( ITYPE.EQ.1 ) THEN
120          IF( UPPER ) THEN
121 *
122 *           Compute inv(U**H)*A*inv(U)
123 *
124             DO 10 K = 1, N
125 *
126 *              Update the upper triangle of A(k:n,k:n)
127 *
128                AKK = A( K, K )
129                BKK = B( K, K )
130                AKK = AKK / BKK**2
131                A( K, K ) = AKK
132                IF( K.LT.N ) THEN
133                   CALL ZDSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
134                   CT = -HALF*AKK
135                   CALL ZLACGV( N-K, A( K, K+1 ), LDA )
136                   CALL ZLACGV( N-K, B( K, K+1 ), LDB )
137                   CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
138      $                        LDA )
139                   CALL ZHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
140      $                        B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
141                   CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
142      $                        LDA )
143                   CALL ZLACGV( N-K, B( K, K+1 ), LDB )
144                   CALL ZTRSV( UPLO, 'Conjugate transpose''Non-unit',
145      $                        N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
146      $                        LDA )
147                   CALL ZLACGV( N-K, A( K, K+1 ), LDA )
148                END IF
149    10       CONTINUE
150          ELSE
151 *
152 *           Compute inv(L)*A*inv(L**H)
153 *
154             DO 20 K = 1, N
155 *
156 *              Update the lower triangle of A(k:n,k:n)
157 *
158                AKK = A( K, K )
159                BKK = B( K, K )
160                AKK = AKK / BKK**2
161                A( K, K ) = AKK
162                IF( K.LT.N ) THEN
163                   CALL ZDSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
164                   CT = -HALF*AKK
165                   CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
166                   CALL ZHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
167      $                        B( K+1, K ), 1, A( K+1, K+1 ), LDA )
168                   CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ), 1 )
169                   CALL ZTRSV( UPLO, 'No transpose''Non-unit', N-K,
170      $                        B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
171                END IF
172    20       CONTINUE
173          END IF
174       ELSE
175          IF( UPPER ) THEN
176 *
177 *           Compute U*A*U**H
178 *
179             DO 30 K = 1, N
180 *
181 *              Update the upper triangle of A(1:k,1:k)
182 *
183                AKK = A( K, K )
184                BKK = B( K, K )
185                CALL ZTRMV( UPLO, 'No transpose''Non-unit', K-1, B,
186      $                     LDB, A( 1, K ), 1 )
187                CT = HALF*AKK
188                CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
189                CALL ZHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ), 1,
190      $                     A, LDA )
191                CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
192                CALL ZDSCAL( K-1, BKK, A( 1, K ), 1 )
193                A( K, K ) = AKK*BKK**2
194    30       CONTINUE
195          ELSE
196 *
197 *           Compute L**H *A*L
198 *
199             DO 40 K = 1, N
200 *
201 *              Update the lower triangle of A(1:k,1:k)
202 *
203                AKK = A( K, K )
204                BKK = B( K, K )
205                CALL ZLACGV( K-1, A( K, 1 ), LDA )
206                CALL ZTRMV( UPLO, 'Conjugate transpose''Non-unit', K-1,
207      $                     B, LDB, A( K, 1 ), LDA )
208                CT = HALF*AKK
209                CALL ZLACGV( K-1, B( K, 1 ), LDB )
210                CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
211                CALL ZHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K, 1 ),
212      $                     LDB, A, LDA )
213                CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
214                CALL ZLACGV( K-1, B( K, 1 ), LDB )
215                CALL ZDSCAL( K-1, BKK, A( K, 1 ), LDA )
216                CALL ZLACGV( K-1, A( K, 1 ), LDA )
217                A( K, K ) = AKK*BKK**2
218    40       CONTINUE
219          END IF
220       END IF
221       RETURN
222 *
223 *     End of ZHEGS2
224 *
225       END