1       SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, ITYPE, LDA, LDB, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         A( LDA, * ), B( LDB, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZHEGST reduces a complex Hermitian-definite generalized
 20 *  eigenproblem to standard form.
 21 *
 22 *  If ITYPE = 1, the problem is A*x = lambda*B*x,
 23 *  and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
 24 *
 25 *  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 26 *  B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
 27 *
 28 *  B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
 29 *
 30 *  Arguments
 31 *  =========
 32 *
 33 *  ITYPE   (input) INTEGER
 34 *          = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
 35 *          = 2 or 3: compute U*A*U**H or L**H*A*L.
 36 *
 37 *  UPLO    (input) CHARACTER*1
 38 *          = 'U':  Upper triangle of A is stored and B is factored as
 39 *                  U**H*U;
 40 *          = 'L':  Lower triangle of A is stored and B is factored as
 41 *                  L*L**H.
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrices A and B.  N >= 0.
 45 *
 46 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 47 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 48 *          N-by-N upper triangular part of A contains the upper
 49 *          triangular part of the matrix A, and the strictly lower
 50 *          triangular part of A is not referenced.  If UPLO = 'L', the
 51 *          leading N-by-N lower triangular part of A contains the lower
 52 *          triangular part of the matrix A, and the strictly upper
 53 *          triangular part of A is not referenced.
 54 *
 55 *          On exit, if INFO = 0, the transformed matrix, stored in the
 56 *          same format as A.
 57 *
 58 *  LDA     (input) INTEGER
 59 *          The leading dimension of the array A.  LDA >= max(1,N).
 60 *
 61 *  B       (input) COMPLEX*16 array, dimension (LDB,N)
 62 *          The triangular factor from the Cholesky factorization of B,
 63 *          as returned by ZPOTRF.
 64 *
 65 *  LDB     (input) INTEGER
 66 *          The leading dimension of the array B.  LDB >= max(1,N).
 67 *
 68 *  INFO    (output) INTEGER
 69 *          = 0:  successful exit
 70 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 71 *
 72 *  =====================================================================
 73 *
 74 *     .. Parameters ..
 75       DOUBLE PRECISION   ONE
 76       PARAMETER          ( ONE = 1.0D+0 )
 77       COMPLEX*16         CONE, HALF
 78       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ),
 79      $                   HALF = ( 0.5D+00.0D+0 ) )
 80 *     ..
 81 *     .. Local Scalars ..
 82       LOGICAL            UPPER
 83       INTEGER            K, KB, NB
 84 *     ..
 85 *     .. External Subroutines ..
 86       EXTERNAL           XERBLA, ZHEGS2, ZHEMM, ZHER2K, ZTRMM, ZTRSM
 87 *     ..
 88 *     .. Intrinsic Functions ..
 89       INTRINSIC          MAXMIN
 90 *     ..
 91 *     .. External Functions ..
 92       LOGICAL            LSAME
 93       INTEGER            ILAENV
 94       EXTERNAL           LSAME, ILAENV
 95 *     ..
 96 *     .. Executable Statements ..
 97 *
 98 *     Test the input parameters.
 99 *
100       INFO = 0
101       UPPER = LSAME( UPLO, 'U' )
102       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
103          INFO = -1
104       ELSE IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
105          INFO = -2
106       ELSE IF( N.LT.0 ) THEN
107          INFO = -3
108       ELSE IF( LDA.LT.MAX1, N ) ) THEN
109          INFO = -5
110       ELSE IF( LDB.LT.MAX1, N ) ) THEN
111          INFO = -7
112       END IF
113       IF( INFO.NE.0 ) THEN
114          CALL XERBLA( 'ZHEGST'-INFO )
115          RETURN
116       END IF
117 *
118 *     Quick return if possible
119 *
120       IF( N.EQ.0 )
121      $   RETURN
122 *
123 *     Determine the block size for this environment.
124 *
125       NB = ILAENV( 1'ZHEGST', UPLO, N, -1-1-1 )
126 *
127       IF( NB.LE.1 .OR. NB.GE.N ) THEN
128 *
129 *        Use unblocked code
130 *
131          CALL ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
132       ELSE
133 *
134 *        Use blocked code
135 *
136          IF( ITYPE.EQ.1 ) THEN
137             IF( UPPER ) THEN
138 *
139 *              Compute inv(U**H)*A*inv(U)
140 *
141                DO 10 K = 1, N, NB
142                   KB = MIN( N-K+1, NB )
143 *
144 *                 Update the upper triangle of A(k:n,k:n)
145 *
146                   CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
147      $                         B( K, K ), LDB, INFO )
148                   IF( K+KB.LE.N ) THEN
149                      CALL ZTRSM( 'Left', UPLO, 'Conjugate transpose',
150      $                           'Non-unit', KB, N-K-KB+1, CONE,
151      $                           B( K, K ), LDB, A( K, K+KB ), LDA )
152                      CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1-HALF,
153      $                           A( K, K ), LDA, B( K, K+KB ), LDB,
154      $                           CONE, A( K, K+KB ), LDA )
155                      CALL ZHER2K( UPLO, 'Conjugate transpose', N-K-KB+1,
156      $                            KB, -CONE, A( K, K+KB ), LDA,
157      $                            B( K, K+KB ), LDB, ONE,
158      $                            A( K+KB, K+KB ), LDA )
159                      CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1-HALF,
160      $                           A( K, K ), LDA, B( K, K+KB ), LDB,
161      $                           CONE, A( K, K+KB ), LDA )
162                      CALL ZTRSM( 'Right', UPLO, 'No transpose',
163      $                           'Non-unit', KB, N-K-KB+1, CONE,
164      $                           B( K+KB, K+KB ), LDB, A( K, K+KB ),
165      $                           LDA )
166                   END IF
167    10          CONTINUE
168             ELSE
169 *
170 *              Compute inv(L)*A*inv(L**H)
171 *
172                DO 20 K = 1, N, NB
173                   KB = MIN( N-K+1, NB )
174 *
175 *                 Update the lower triangle of A(k:n,k:n)
176 *
177                   CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
178      $                         B( K, K ), LDB, INFO )
179                   IF( K+KB.LE.N ) THEN
180                      CALL ZTRSM( 'Right', UPLO, 'Conjugate transpose',
181      $                           'Non-unit', N-K-KB+1, KB, CONE,
182      $                           B( K, K ), LDB, A( K+KB, K ), LDA )
183                      CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
184      $                           A( K, K ), LDA, B( K+KB, K ), LDB,
185      $                           CONE, A( K+KB, K ), LDA )
186                      CALL ZHER2K( UPLO, 'No transpose', N-K-KB+1, KB,
187      $                            -CONE, A( K+KB, K ), LDA,
188      $                            B( K+KB, K ), LDB, ONE,
189      $                            A( K+KB, K+KB ), LDA )
190                      CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
191      $                           A( K, K ), LDA, B( K+KB, K ), LDB,
192      $                           CONE, A( K+KB, K ), LDA )
193                      CALL ZTRSM( 'Left', UPLO, 'No transpose',
194      $                           'Non-unit', N-K-KB+1, KB, CONE,
195      $                           B( K+KB, K+KB ), LDB, A( K+KB, K ),
196      $                           LDA )
197                   END IF
198    20          CONTINUE
199             END IF
200          ELSE
201             IF( UPPER ) THEN
202 *
203 *              Compute U*A*U**H
204 *
205                DO 30 K = 1, N, NB
206                   KB = MIN( N-K+1, NB )
207 *
208 *                 Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
209 *
210                   CALL ZTRMM( 'Left', UPLO, 'No transpose''Non-unit',
211      $                        K-1, KB, CONE, B, LDB, A( 1, K ), LDA )
212                   CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
213      $                        LDA, B( 1, K ), LDB, CONE, A( 1, K ),
214      $                        LDA )
215                   CALL ZHER2K( UPLO, 'No transpose', K-1, KB, CONE,
216      $                         A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
217      $                         LDA )
218                   CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
219      $                        LDA, B( 1, K ), LDB, CONE, A( 1, K ),
220      $                        LDA )
221                   CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose',
222      $                        'Non-unit', K-1, KB, CONE, B( K, K ), LDB,
223      $                        A( 1, K ), LDA )
224                   CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
225      $                         B( K, K ), LDB, INFO )
226    30          CONTINUE
227             ELSE
228 *
229 *              Compute L**H*A*L
230 *
231                DO 40 K = 1, N, NB
232                   KB = MIN( N-K+1, NB )
233 *
234 *                 Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
235 *
236                   CALL ZTRMM( 'Right', UPLO, 'No transpose''Non-unit',
237      $                        KB, K-1, CONE, B, LDB, A( K, 1 ), LDA )
238                   CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
239      $                        LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
240      $                        LDA )
241                   CALL ZHER2K( UPLO, 'Conjugate transpose', K-1, KB,
242      $                         CONE, A( K, 1 ), LDA, B( K, 1 ), LDB,
243      $                         ONE, A, LDA )
244                   CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
245      $                        LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
246      $                        LDA )
247                   CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose',
248      $                        'Non-unit', KB, K-1, CONE, B( K, K ), LDB,
249      $                        A( K, 1 ), LDA )
250                   CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
251      $                         B( K, K ), LDB, INFO )
252    40          CONTINUE
253             END IF
254          END IF
255       END IF
256       RETURN
257 *
258 *     End of ZHEGST
259 *
260       END