1       SUBROUTINE ZHEGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  2      $                  LWORK, RWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, ITYPE, LDA, LDB, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * ), W( * )
 15       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZHEGV computes all the eigenvalues, and optionally, the eigenvectors
 22 *  of a complex generalized Hermitian-definite eigenproblem, of the form
 23 *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 24 *  Here A and B are assumed to be Hermitian and B is also
 25 *  positive definite.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  ITYPE   (input) INTEGER
 31 *          Specifies the problem type to be solved:
 32 *          = 1:  A*x = (lambda)*B*x
 33 *          = 2:  A*B*x = (lambda)*x
 34 *          = 3:  B*A*x = (lambda)*x
 35 *
 36 *  JOBZ    (input) CHARACTER*1
 37 *          = 'N':  Compute eigenvalues only;
 38 *          = 'V':  Compute eigenvalues and eigenvectors.
 39 *
 40 *  UPLO    (input) CHARACTER*1
 41 *          = 'U':  Upper triangles of A and B are stored;
 42 *          = 'L':  Lower triangles of A and B are stored.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrices A and B.  N >= 0.
 46 *
 47 *  A       (input/output) COMPLEX*16 array, dimension (LDA, N)
 48 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 49 *          leading N-by-N upper triangular part of A contains the
 50 *          upper triangular part of the matrix A.  If UPLO = 'L',
 51 *          the leading N-by-N lower triangular part of A contains
 52 *          the lower triangular part of the matrix A.
 53 *
 54 *          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 55 *          matrix Z of eigenvectors.  The eigenvectors are normalized
 56 *          as follows:
 57 *          if ITYPE = 1 or 2, Z**H*B*Z = I;
 58 *          if ITYPE = 3, Z**H*inv(B)*Z = I.
 59 *          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
 60 *          or the lower triangle (if UPLO='L') of A, including the
 61 *          diagonal, is destroyed.
 62 *
 63 *  LDA     (input) INTEGER
 64 *          The leading dimension of the array A.  LDA >= max(1,N).
 65 *
 66 *  B       (input/output) COMPLEX*16 array, dimension (LDB, N)
 67 *          On entry, the Hermitian positive definite matrix B.
 68 *          If UPLO = 'U', the leading N-by-N upper triangular part of B
 69 *          contains the upper triangular part of the matrix B.
 70 *          If UPLO = 'L', the leading N-by-N lower triangular part of B
 71 *          contains the lower triangular part of the matrix B.
 72 *
 73 *          On exit, if INFO <= N, the part of B containing the matrix is
 74 *          overwritten by the triangular factor U or L from the Cholesky
 75 *          factorization B = U**H*U or B = L*L**H.
 76 *
 77 *  LDB     (input) INTEGER
 78 *          The leading dimension of the array B.  LDB >= max(1,N).
 79 *
 80 *  W       (output) DOUBLE PRECISION array, dimension (N)
 81 *          If INFO = 0, the eigenvalues in ascending order.
 82 *
 83 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 84 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 85 *
 86 *  LWORK   (input) INTEGER
 87 *          The length of the array WORK.  LWORK >= max(1,2*N-1).
 88 *          For optimal efficiency, LWORK >= (NB+1)*N,
 89 *          where NB is the blocksize for ZHETRD returned by ILAENV.
 90 *
 91 *          If LWORK = -1, then a workspace query is assumed; the routine
 92 *          only calculates the optimal size of the WORK array, returns
 93 *          this value as the first entry of the WORK array, and no error
 94 *          message related to LWORK is issued by XERBLA.
 95 *
 96 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
 97 *
 98 *  INFO    (output) INTEGER
 99 *          = 0:  successful exit
100 *          < 0:  if INFO = -i, the i-th argument had an illegal value
101 *          > 0:  ZPOTRF or ZHEEV returned an error code:
102 *             <= N:  if INFO = i, ZHEEV failed to converge;
103 *                    i off-diagonal elements of an intermediate
104 *                    tridiagonal form did not converge to zero;
105 *             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
106 *                    minor of order i of B is not positive definite.
107 *                    The factorization of B could not be completed and
108 *                    no eigenvalues or eigenvectors were computed.
109 *
110 *  =====================================================================
111 *
112 *     .. Parameters ..
113       COMPLEX*16         ONE
114       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
115 *     ..
116 *     .. Local Scalars ..
117       LOGICAL            LQUERY, UPPER, WANTZ
118       CHARACTER          TRANS
119       INTEGER            LWKOPT, NB, NEIG
120 *     ..
121 *     .. External Functions ..
122       LOGICAL            LSAME
123       INTEGER            ILAENV
124       EXTERNAL           LSAME, ILAENV
125 *     ..
126 *     .. External Subroutines ..
127       EXTERNAL           XERBLA, ZHEEV, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
128 *     ..
129 *     .. Intrinsic Functions ..
130       INTRINSIC          MAX
131 *     ..
132 *     .. Executable Statements ..
133 *
134 *     Test the input parameters.
135 *
136       WANTZ = LSAME( JOBZ, 'V' )
137       UPPER = LSAME( UPLO, 'U' )
138       LQUERY = ( LWORK.EQ.-1 )
139 *
140       INFO = 0
141       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
142          INFO = -1
143       ELSE IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
144          INFO = -2
145       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
146          INFO = -3
147       ELSE IF( N.LT.0 ) THEN
148          INFO = -4
149       ELSE IF( LDA.LT.MAX1, N ) ) THEN
150          INFO = -6
151       ELSE IF( LDB.LT.MAX1, N ) ) THEN
152          INFO = -8
153       END IF
154 *
155       IF( INFO.EQ.0 ) THEN
156          NB = ILAENV( 1'ZHETRD', UPLO, N, -1-1-1 )
157          LWKOPT = MAX1, ( NB + 1 )*N )
158          WORK( 1 ) = LWKOPT
159 *
160          IF( LWORK.LT.MAX12*- 1 ) .AND. .NOT.LQUERY ) THEN
161             INFO = -11
162          END IF
163       END IF
164 *
165       IF( INFO.NE.0 ) THEN
166          CALL XERBLA( 'ZHEGV '-INFO )
167          RETURN
168       ELSE IF( LQUERY ) THEN
169          RETURN
170       END IF
171 *
172 *     Quick return if possible
173 *
174       IF( N.EQ.0 )
175      $   RETURN
176 *
177 *     Form a Cholesky factorization of B.
178 *
179       CALL ZPOTRF( UPLO, N, B, LDB, INFO )
180       IF( INFO.NE.0 ) THEN
181          INFO = N + INFO
182          RETURN
183       END IF
184 *
185 *     Transform problem to standard eigenvalue problem and solve.
186 *
187       CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
188       CALL ZHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO )
189 *
190       IF( WANTZ ) THEN
191 *
192 *        Backtransform eigenvectors to the original problem.
193 *
194          NEIG = N
195          IF( INFO.GT.0 )
196      $      NEIG = INFO - 1
197          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
198 *
199 *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
200 *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
201 *
202             IF( UPPER ) THEN
203                TRANS = 'N'
204             ELSE
205                TRANS = 'C'
206             END IF
207 *
208             CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
209      $                  B, LDB, A, LDA )
210 *
211          ELSE IF( ITYPE.EQ.3 ) THEN
212 *
213 *           For B*A*x=(lambda)*x;
214 *           backtransform eigenvectors: x = L*y or U**H *y
215 *
216             IF( UPPER ) THEN
217                TRANS = 'C'
218             ELSE
219                TRANS = 'N'
220             END IF
221 *
222             CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, NEIG, ONE,
223      $                  B, LDB, A, LDA )
224          END IF
225       END IF
226 *
227       WORK( 1 ) = LWKOPT
228 *
229       RETURN
230 *
231 *     End of ZHEGV
232 *
233       END