1       SUBROUTINE ZHESVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV,
  2      $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
  3      $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
  4      $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
  5 *
  6 *     -- LAPACK driver routine (version 3.2.2)                          --
  7 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  8 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  9 *     -- June 2010                                                    --
 10 *
 11 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 12 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 13 *
 14       IMPLICIT NONE
 15 *     ..
 16 *     .. Scalar Arguments ..
 17       CHARACTER          EQUED, FACT, UPLO
 18       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 19      $                   N_ERR_BNDS
 20       DOUBLE PRECISION   RCOND, RPVGRW
 21 *     ..
 22 *     .. Array Arguments ..
 23       INTEGER            IPIV( * )
 24       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 25      $                   WORK( * ), X( LDX, * )
 26       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
 27      $                   ERR_BNDS_NORM( NRHS, * ),
 28      $                   ERR_BNDS_COMP( NRHS, * )
 29 *     ..
 30 *
 31 *     Purpose
 32 *     =======
 33 *
 34 *     ZHESVXX uses the diagonal pivoting factorization to compute the
 35 *     solution to a complex*16 system of linear equations A * X = B, where
 36 *     A is an N-by-N symmetric matrix and X and B are N-by-NRHS
 37 *     matrices.
 38 *
 39 *     If requested, both normwise and maximum componentwise error bounds
 40 *     are returned. ZHESVXX will return a solution with a tiny
 41 *     guaranteed error (O(eps) where eps is the working machine
 42 *     precision) unless the matrix is very ill-conditioned, in which
 43 *     case a warning is returned. Relevant condition numbers also are
 44 *     calculated and returned.
 45 *
 46 *     ZHESVXX accepts user-provided factorizations and equilibration
 47 *     factors; see the definitions of the FACT and EQUED options.
 48 *     Solving with refinement and using a factorization from a previous
 49 *     ZHESVXX call will also produce a solution with either O(eps)
 50 *     errors or warnings, but we cannot make that claim for general
 51 *     user-provided factorizations and equilibration factors if they
 52 *     differ from what ZHESVXX would itself produce.
 53 *
 54 *     Description
 55 *     ===========
 56 *
 57 *     The following steps are performed:
 58 *
 59 *     1. If FACT = 'E', double precision scaling factors are computed to equilibrate
 60 *     the system:
 61 *
 62 *       diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
 63 *
 64 *     Whether or not the system will be equilibrated depends on the
 65 *     scaling of the matrix A, but if equilibration is used, A is
 66 *     overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
 67 *
 68 *     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
 69 *     the matrix A (after equilibration if FACT = 'E') as
 70 *
 71 *        A = U * D * U**T,  if UPLO = 'U', or
 72 *        A = L * D * L**T,  if UPLO = 'L',
 73 *
 74 *     where U (or L) is a product of permutation and unit upper (lower)
 75 *     triangular matrices, and D is symmetric and block diagonal with
 76 *     1-by-1 and 2-by-2 diagonal blocks.
 77 *
 78 *     3. If some D(i,i)=0, so that D is exactly singular, then the
 79 *     routine returns with INFO = i. Otherwise, the factored form of A
 80 *     is used to estimate the condition number of the matrix A (see
 81 *     argument RCOND).  If the reciprocal of the condition number is
 82 *     less than machine precision, the routine still goes on to solve
 83 *     for X and compute error bounds as described below.
 84 *
 85 *     4. The system of equations is solved for X using the factored form
 86 *     of A.
 87 *
 88 *     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
 89 *     the routine will use iterative refinement to try to get a small
 90 *     error and error bounds.  Refinement calculates the residual to at
 91 *     least twice the working precision.
 92 *
 93 *     6. If equilibration was used, the matrix X is premultiplied by
 94 *     diag(R) so that it solves the original system before
 95 *     equilibration.
 96 *
 97 *     Arguments
 98 *     =========
 99 *
100 *     Some optional parameters are bundled in the PARAMS array.  These
101 *     settings determine how refinement is performed, but often the
102 *     defaults are acceptable.  If the defaults are acceptable, users
103 *     can pass NPARAMS = 0 which prevents the source code from accessing
104 *     the PARAMS argument.
105 *
106 *     FACT    (input) CHARACTER*1
107 *     Specifies whether or not the factored form of the matrix A is
108 *     supplied on entry, and if not, whether the matrix A should be
109 *     equilibrated before it is factored.
110 *       = 'F':  On entry, AF and IPIV contain the factored form of A.
111 *               If EQUED is not 'N', the matrix A has been
112 *               equilibrated with scaling factors given by S.
113 *               A, AF, and IPIV are not modified.
114 *       = 'N':  The matrix A will be copied to AF and factored.
115 *       = 'E':  The matrix A will be equilibrated if necessary, then
116 *               copied to AF and factored.
117 *
118 *     N       (input) INTEGER
119 *     The number of linear equations, i.e., the order of the
120 *     matrix A.  N >= 0.
121 *
122 *     NRHS    (input) INTEGER
123 *     The number of right hand sides, i.e., the number of columns
124 *     of the matrices B and X.  NRHS >= 0.
125 *
126 *     A       (input/output) COMPLEX*16 array, dimension (LDA,N)
127 *     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
128 *     upper triangular part of A contains the upper triangular
129 *     part of the matrix A, and the strictly lower triangular
130 *     part of A is not referenced.  If UPLO = 'L', the leading
131 *     N-by-N lower triangular part of A contains the lower
132 *     triangular part of the matrix A, and the strictly upper
133 *     triangular part of A is not referenced.
134 *
135 *     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
136 *     diag(S)*A*diag(S).
137 *
138 *     LDA     (input) INTEGER
139 *     The leading dimension of the array A.  LDA >= max(1,N).
140 *
141 *     AF      (input or output) COMPLEX*16 array, dimension (LDAF,N)
142 *     If FACT = 'F', then AF is an input argument and on entry
143 *     contains the block diagonal matrix D and the multipliers
144 *     used to obtain the factor U or L from the factorization A =
145 *     U*D*U**T or A = L*D*L**T as computed by DSYTRF.
146 *
147 *     If FACT = 'N', then AF is an output argument and on exit
148 *     returns the block diagonal matrix D and the multipliers
149 *     used to obtain the factor U or L from the factorization A =
150 *     U*D*U**T or A = L*D*L**T.
151 *
152 *     LDAF    (input) INTEGER
153 *     The leading dimension of the array AF.  LDAF >= max(1,N).
154 *
155 *     IPIV    (input or output) INTEGER array, dimension (N)
156 *     If FACT = 'F', then IPIV is an input argument and on entry
157 *     contains details of the interchanges and the block
158 *     structure of D, as determined by ZHETRF.  If IPIV(k) > 0,
159 *     then rows and columns k and IPIV(k) were interchanged and
160 *     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
161 *     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
162 *     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
163 *     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
164 *     then rows and columns k+1 and -IPIV(k) were interchanged
165 *     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
166 *
167 *     If FACT = 'N', then IPIV is an output argument and on exit
168 *     contains details of the interchanges and the block
169 *     structure of D, as determined by ZHETRF.
170 *
171 *     EQUED   (input or output) CHARACTER*1
172 *     Specifies the form of equilibration that was done.
173 *       = 'N':  No equilibration (always true if FACT = 'N').
174 *       = 'Y':  Both row and column equilibration, i.e., A has been
175 *               replaced by diag(S) * A * diag(S).
176 *     EQUED is an input argument if FACT = 'F'; otherwise, it is an
177 *     output argument.
178 *
179 *     S       (input or output) DOUBLE PRECISION array, dimension (N)
180 *     The scale factors for A.  If EQUED = 'Y', A is multiplied on
181 *     the left and right by diag(S).  S is an input argument if FACT =
182 *     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
183 *     = 'Y', each element of S must be positive.  If S is output, each
184 *     element of S is a power of the radix. If S is input, each element
185 *     of S should be a power of the radix to ensure a reliable solution
186 *     and error estimates. Scaling by powers of the radix does not cause
187 *     rounding errors unless the result underflows or overflows.
188 *     Rounding errors during scaling lead to refining with a matrix that
189 *     is not equivalent to the input matrix, producing error estimates
190 *     that may not be reliable.
191 *
192 *     B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
193 *     On entry, the N-by-NRHS right hand side matrix B.
194 *     On exit,
195 *     if EQUED = 'N', B is not modified;
196 *     if EQUED = 'Y', B is overwritten by diag(S)*B;
197 *
198 *     LDB     (input) INTEGER
199 *     The leading dimension of the array B.  LDB >= max(1,N).
200 *
201 *     X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
202 *     If INFO = 0, the N-by-NRHS solution matrix X to the original
203 *     system of equations.  Note that A and B are modified on exit if
204 *     EQUED .ne. 'N', and the solution to the equilibrated system is
205 *     inv(diag(S))*X.
206 *
207 *     LDX     (input) INTEGER
208 *     The leading dimension of the array X.  LDX >= max(1,N).
209 *
210 *     RCOND   (output) DOUBLE PRECISION
211 *     Reciprocal scaled condition number.  This is an estimate of the
212 *     reciprocal Skeel condition number of the matrix A after
213 *     equilibration (if done).  If this is less than the machine
214 *     precision (in particular, if it is zero), the matrix is singular
215 *     to working precision.  Note that the error may still be small even
216 *     if this number is very small and the matrix appears ill-
217 *     conditioned.
218 *
219 *     RPVGRW  (output) DOUBLE PRECISION
220 *     Reciprocal pivot growth.  On exit, this contains the reciprocal
221 *     pivot growth factor norm(A)/norm(U). The "max absolute element"
222 *     norm is used.  If this is much less than 1, then the stability of
223 *     the LU factorization of the (equilibrated) matrix A could be poor.
224 *     This also means that the solution X, estimated condition numbers,
225 *     and error bounds could be unreliable. If factorization fails with
226 *     0<INFO<=N, then this contains the reciprocal pivot growth factor
227 *     for the leading INFO columns of A.
228 *
229 *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
230 *     Componentwise relative backward error.  This is the
231 *     componentwise relative backward error of each solution vector X(j)
232 *     (i.e., the smallest relative change in any element of A or B that
233 *     makes X(j) an exact solution).
234 *
235 *     N_ERR_BNDS (input) INTEGER
236 *     Number of error bounds to return for each right hand side
237 *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
238 *     ERR_BNDS_COMP below.
239 *
240 *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
241 *     For each right-hand side, this array contains information about
242 *     various error bounds and condition numbers corresponding to the
243 *     normwise relative error, which is defined as follows:
244 *
245 *     Normwise relative error in the ith solution vector:
246 *             max_j (abs(XTRUE(j,i) - X(j,i)))
247 *            ------------------------------
248 *                  max_j abs(X(j,i))
249 *
250 *     The array is indexed by the type of error information as described
251 *     below. There currently are up to three pieces of information
252 *     returned.
253 *
254 *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
255 *     right-hand side.
256 *
257 *     The second index in ERR_BNDS_NORM(:,err) contains the following
258 *     three fields:
259 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
260 *              reciprocal condition number is less than the threshold
261 *              sqrt(n) * dlamch('Epsilon').
262 *
263 *     err = 2 "Guaranteed" error bound: The estimated forward error,
264 *              almost certainly within a factor of 10 of the true error
265 *              so long as the next entry is greater than the threshold
266 *              sqrt(n) * dlamch('Epsilon'). This error bound should only
267 *              be trusted if the previous boolean is true.
268 *
269 *     err = 3  Reciprocal condition number: Estimated normwise
270 *              reciprocal condition number.  Compared with the threshold
271 *              sqrt(n) * dlamch('Epsilon') to determine if the error
272 *              estimate is "guaranteed". These reciprocal condition
273 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
274 *              appropriately scaled matrix Z.
275 *              Let Z = S*A, where S scales each row by a power of the
276 *              radix so all absolute row sums of Z are approximately 1.
277 *
278 *     See Lapack Working Note 165 for further details and extra
279 *     cautions.
280 *
281 *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
282 *     For each right-hand side, this array contains information about
283 *     various error bounds and condition numbers corresponding to the
284 *     componentwise relative error, which is defined as follows:
285 *
286 *     Componentwise relative error in the ith solution vector:
287 *                    abs(XTRUE(j,i) - X(j,i))
288 *             max_j ----------------------
289 *                         abs(X(j,i))
290 *
291 *     The array is indexed by the right-hand side i (on which the
292 *     componentwise relative error depends), and the type of error
293 *     information as described below. There currently are up to three
294 *     pieces of information returned for each right-hand side. If
295 *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
296 *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
297 *     the first (:,N_ERR_BNDS) entries are returned.
298 *
299 *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
300 *     right-hand side.
301 *
302 *     The second index in ERR_BNDS_COMP(:,err) contains the following
303 *     three fields:
304 *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
305 *              reciprocal condition number is less than the threshold
306 *              sqrt(n) * dlamch('Epsilon').
307 *
308 *     err = 2 "Guaranteed" error bound: The estimated forward error,
309 *              almost certainly within a factor of 10 of the true error
310 *              so long as the next entry is greater than the threshold
311 *              sqrt(n) * dlamch('Epsilon'). This error bound should only
312 *              be trusted if the previous boolean is true.
313 *
314 *     err = 3  Reciprocal condition number: Estimated componentwise
315 *              reciprocal condition number.  Compared with the threshold
316 *              sqrt(n) * dlamch('Epsilon') to determine if the error
317 *              estimate is "guaranteed". These reciprocal condition
318 *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
319 *              appropriately scaled matrix Z.
320 *              Let Z = S*(A*diag(x)), where x is the solution for the
321 *              current right-hand side and S scales each row of
322 *              A*diag(x) by a power of the radix so all absolute row
323 *              sums of Z are approximately 1.
324 *
325 *     See Lapack Working Note 165 for further details and extra
326 *     cautions.
327 *
328 *     NPARAMS (input) INTEGER
329 *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
330 *     PARAMS array is never referenced and default values are used.
331 *
332 *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
333 *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
334 *     that entry will be filled with default value used for that
335 *     parameter.  Only positions up to NPARAMS are accessed; defaults
336 *     are used for higher-numbered parameters.
337 *
338 *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
339 *            refinement or not.
340 *         Default: 1.0D+0
341 *            = 0.0 : No refinement is performed, and no error bounds are
342 *                    computed.
343 *            = 1.0 : Use the extra-precise refinement algorithm.
344 *              (other values are reserved for future use)
345 *
346 *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
347 *            computations allowed for refinement.
348 *         Default: 10
349 *         Aggressive: Set to 100 to permit convergence using approximate
350 *                     factorizations or factorizations other than LU. If
351 *                     the factorization uses a technique other than
352 *                     Gaussian elimination, the guarantees in
353 *                     err_bnds_norm and err_bnds_comp may no longer be
354 *                     trustworthy.
355 *
356 *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
357 *            will attempt to find a solution with small componentwise
358 *            relative error in the double-precision algorithm.  Positive
359 *            is true, 0.0 is false.
360 *         Default: 1.0 (attempt componentwise convergence)
361 *
362 *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
363 *
364 *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
365 *
366 *     INFO    (output) INTEGER
367 *       = 0:  Successful exit. The solution to every right-hand side is
368 *         guaranteed.
369 *       < 0:  If INFO = -i, the i-th argument had an illegal value
370 *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
371 *         has been completed, but the factor U is exactly singular, so
372 *         the solution and error bounds could not be computed. RCOND = 0
373 *         is returned.
374 *       = N+J: The solution corresponding to the Jth right-hand side is
375 *         not guaranteed. The solutions corresponding to other right-
376 *         hand sides K with K > J may not be guaranteed as well, but
377 *         only the first such right-hand side is reported. If a small
378 *         componentwise error is not requested (PARAMS(3) = 0.0) then
379 *         the Jth right-hand side is the first with a normwise error
380 *         bound that is not guaranteed (the smallest J such
381 *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
382 *         the Jth right-hand side is the first with either a normwise or
383 *         componentwise error bound that is not guaranteed (the smallest
384 *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
385 *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
386 *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
387 *         about all of the right-hand sides check ERR_BNDS_NORM or
388 *         ERR_BNDS_COMP.
389 *
390 *     ==================================================================
391 *
392 *     .. Parameters ..
393       DOUBLE PRECISION   ZERO, ONE
394       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
395       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
396       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
397       INTEGER            CMP_ERR_I, PIV_GROWTH_I
398       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
399      $                   BERR_I = 3 )
400       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
401       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
402      $                   PIV_GROWTH_I = 9 )
403 *     ..
404 *     .. Local Scalars ..
405       LOGICAL            EQUIL, NOFACT, RCEQU
406       INTEGER            INFEQU, J
407       DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
408 *     ..
409 *     .. External Functions ..
410       EXTERNAL           LSAME, DLAMCH,  ZLA_HERPVGRW
411       LOGICAL            LSAME
412       DOUBLE PRECISION   DLAMCH, ZLA_HERPVGRW
413 *     ..
414 *     .. External Subroutines ..
415       EXTERNAL           ZHECON, ZHEEQUB, ZHETRF, ZHETRS, ZLACPY,
416      $                   ZLAQHE, XERBLA, ZLASCL2, ZHERFSX
417 *     ..
418 *     .. Intrinsic Functions ..
419       INTRINSIC          MAXMIN
420 *     ..
421 *     .. Executable Statements ..
422 *
423       INFO = 0
424       NOFACT = LSAME( FACT, 'N' )
425       EQUIL = LSAME( FACT, 'E' )
426       SMLNUM = DLAMCH( 'Safe minimum' )
427       BIGNUM = ONE / SMLNUM
428       IF( NOFACT .OR. EQUIL ) THEN
429          EQUED = 'N'
430          RCEQU = .FALSE.
431       ELSE
432          RCEQU = LSAME( EQUED, 'Y' )
433       ENDIF
434 *
435 *     Default is failure.  If an input parameter is wrong or
436 *     factorization fails, make everything look horrible.  Only the
437 *     pivot growth is set here, the rest is initialized in ZHERFSX.
438 *
439       RPVGRW = ZERO
440 *
441 *     Test the input parameters.  PARAMS is not tested until ZHERFSX.
442 *
443       IF.NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
444      $     LSAME( FACT, 'F' ) ) THEN
445          INFO = -1
446       ELSE IF.NOT.LSAME( UPLO, 'U' ) .AND.
447      $         .NOT.LSAME( UPLO, 'L' ) ) THEN
448          INFO = -2
449       ELSE IF( N.LT.0 ) THEN
450          INFO = -3
451       ELSE IF( NRHS.LT.0 ) THEN
452          INFO = -4
453       ELSE IF( LDA.LT.MAX1, N ) ) THEN
454          INFO = -6
455       ELSE IF( LDAF.LT.MAX1, N ) ) THEN
456          INFO = -8
457       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
458      $        ( RCEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
459          INFO = -9
460       ELSE
461          IF ( RCEQU ) THEN
462             SMIN = BIGNUM
463             SMAX = ZERO
464             DO 10 J = 1, N
465                SMIN = MIN( SMIN, S( J ) )
466                SMAX = MAX( SMAX, S( J ) )
467  10         CONTINUE
468             IF( SMIN.LE.ZERO ) THEN
469                INFO = -10
470             ELSE IF( N.GT.0 ) THEN
471                SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
472             ELSE
473                SCOND = ONE
474             END IF
475          END IF
476          IF( INFO.EQ.0 ) THEN
477             IF( LDB.LT.MAX1, N ) ) THEN
478                INFO = -12
479             ELSE IF( LDX.LT.MAX1, N ) ) THEN
480                INFO = -14
481             END IF
482          END IF
483       END IF
484 *
485       IF( INFO.NE.0 ) THEN
486          CALL XERBLA( 'ZHESVXX'-INFO )
487          RETURN
488       END IF
489 *
490       IF( EQUIL ) THEN
491 *
492 *     Compute row and column scalings to equilibrate the matrix A.
493 *
494          CALL ZHEEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFEQU )
495          IF( INFEQU.EQ.0 ) THEN
496 *
497 *     Equilibrate the matrix.
498 *
499             CALL ZLAQHE( UPLO, N, A, LDA, S, SCOND, AMAX, EQUED )
500             RCEQU = LSAME( EQUED, 'Y' )
501          END IF
502       END IF
503 *
504 *     Scale the right-hand side.
505 *
506       IF( RCEQU ) CALL ZLASCL2( N, NRHS, S, B, LDB )
507 *
508       IF( NOFACT .OR. EQUIL ) THEN
509 *
510 *        Compute the LDL^T or UDU^T factorization of A.
511 *
512          CALL ZLACPY( UPLO, N, N, A, LDA, AF, LDAF )
513          CALL ZHETRF( UPLO, N, AF, LDAF, IPIV, WORK, 5*MAX(1,N), INFO )
514 *
515 *        Return if INFO is non-zero.
516 *
517          IF( INFO.GT.0 ) THEN
518 *
519 *           Pivot in column INFO is exactly 0
520 *           Compute the reciprocal pivot growth factor of the
521 *           leading rank-deficient INFO columns of A.
522 *
523             IF( N.GT.0 )
524      $           RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF,
525      $           IPIV, RWORK )
526             RETURN
527          END IF
528       END IF
529 *
530 *     Compute the reciprocal pivot growth factor RPVGRW.
531 *
532       IF( N.GT.0 )
533      $     RPVGRW = ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF, LDAF, IPIV,
534      $     RWORK )
535 *
536 *     Compute the solution matrix X.
537 *
538       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
539       CALL ZHETRS( UPLO, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
540 *
541 *     Use iterative refinement to improve the computed solution and
542 *     compute error bounds and backward error estimates for it.
543 *
544       CALL ZHERFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
545      $     S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM,
546      $     ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO )
547 *
548 *     Scale solutions.
549 *
550       IF ( RCEQU ) THEN
551          CALL ZLASCL2 ( N, NRHS, S, X, LDX )
552       END IF
553 *
554       RETURN
555 *
556 *     End of ZHESVXX
557 *
558       END