1       SUBROUTINE ZHETRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, LWORK, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   D( * ), E( * )
 14       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZHETRD reduces a complex Hermitian matrix A to real symmetric
 21 *  tridiagonal form T by a unitary similarity transformation:
 22 *  Q**H * A * Q = T.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          = 'U':  Upper triangle of A is stored;
 29 *          = 'L':  Lower triangle of A is stored.
 30 *
 31 *  N       (input) INTEGER
 32 *          The order of the matrix A.  N >= 0.
 33 *
 34 *  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
 35 *          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 36 *          N-by-N upper triangular part of A contains the upper
 37 *          triangular part of the matrix A, and the strictly lower
 38 *          triangular part of A is not referenced.  If UPLO = 'L', the
 39 *          leading N-by-N lower triangular part of A contains the lower
 40 *          triangular part of the matrix A, and the strictly upper
 41 *          triangular part of A is not referenced.
 42 *          On exit, if UPLO = 'U', the diagonal and first superdiagonal
 43 *          of A are overwritten by the corresponding elements of the
 44 *          tridiagonal matrix T, and the elements above the first
 45 *          superdiagonal, with the array TAU, represent the unitary
 46 *          matrix Q as a product of elementary reflectors; if UPLO
 47 *          = 'L', the diagonal and first subdiagonal of A are over-
 48 *          written by the corresponding elements of the tridiagonal
 49 *          matrix T, and the elements below the first subdiagonal, with
 50 *          the array TAU, represent the unitary matrix Q as a product
 51 *          of elementary reflectors. See Further Details.
 52 *
 53 *  LDA     (input) INTEGER
 54 *          The leading dimension of the array A.  LDA >= max(1,N).
 55 *
 56 *  D       (output) DOUBLE PRECISION array, dimension (N)
 57 *          The diagonal elements of the tridiagonal matrix T:
 58 *          D(i) = A(i,i).
 59 *
 60 *  E       (output) DOUBLE PRECISION array, dimension (N-1)
 61 *          The off-diagonal elements of the tridiagonal matrix T:
 62 *          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
 63 *
 64 *  TAU     (output) COMPLEX*16 array, dimension (N-1)
 65 *          The scalar factors of the elementary reflectors (see Further
 66 *          Details).
 67 *
 68 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 69 *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 70 *
 71 *  LWORK   (input) INTEGER
 72 *          The dimension of the array WORK.  LWORK >= 1.
 73 *          For optimum performance LWORK >= N*NB, where NB is the
 74 *          optimal blocksize.
 75 *
 76 *          If LWORK = -1, then a workspace query is assumed; the routine
 77 *          only calculates the optimal size of the WORK array, returns
 78 *          this value as the first entry of the WORK array, and no error
 79 *          message related to LWORK is issued by XERBLA.
 80 *
 81 *  INFO    (output) INTEGER
 82 *          = 0:  successful exit
 83 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 84 *
 85 *  Further Details
 86 *  ===============
 87 *
 88 *  If UPLO = 'U', the matrix Q is represented as a product of elementary
 89 *  reflectors
 90 *
 91 *     Q = H(n-1) . . . H(2) H(1).
 92 *
 93 *  Each H(i) has the form
 94 *
 95 *     H(i) = I - tau * v * v**H
 96 *
 97 *  where tau is a complex scalar, and v is a complex vector with
 98 *  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 99 *  A(1:i-1,i+1), and tau in TAU(i).
100 *
101 *  If UPLO = 'L', the matrix Q is represented as a product of elementary
102 *  reflectors
103 *
104 *     Q = H(1) H(2) . . . H(n-1).
105 *
106 *  Each H(i) has the form
107 *
108 *     H(i) = I - tau * v * v**H
109 *
110 *  where tau is a complex scalar, and v is a complex vector with
111 *  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
112 *  and tau in TAU(i).
113 *
114 *  The contents of A on exit are illustrated by the following examples
115 *  with n = 5:
116 *
117 *  if UPLO = 'U':                       if UPLO = 'L':
118 *
119 *    (  d   e   v2  v3  v4 )              (  d                  )
120 *    (      d   e   v3  v4 )              (  e   d              )
121 *    (          d   e   v4 )              (  v1  e   d          )
122 *    (              d   e  )              (  v1  v2  e   d      )
123 *    (                  d  )              (  v1  v2  v3  e   d  )
124 *
125 *  where d and e denote diagonal and off-diagonal elements of T, and vi
126 *  denotes an element of the vector defining H(i).
127 *
128 *  =====================================================================
129 *
130 *     .. Parameters ..
131       DOUBLE PRECISION   ONE
132       PARAMETER          ( ONE = 1.0D+0 )
133       COMPLEX*16         CONE
134       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
135 *     ..
136 *     .. Local Scalars ..
137       LOGICAL            LQUERY, UPPER
138       INTEGER            I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
139      $                   NBMIN, NX
140 *     ..
141 *     .. External Subroutines ..
142       EXTERNAL           XERBLA, ZHER2K, ZHETD2, ZLATRD
143 *     ..
144 *     .. Intrinsic Functions ..
145       INTRINSIC          MAX
146 *     ..
147 *     .. External Functions ..
148       LOGICAL            LSAME
149       INTEGER            ILAENV
150       EXTERNAL           LSAME, ILAENV
151 *     ..
152 *     .. Executable Statements ..
153 *
154 *     Test the input parameters
155 *
156       INFO = 0
157       UPPER = LSAME( UPLO, 'U' )
158       LQUERY = ( LWORK.EQ.-1 )
159       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
160          INFO = -1
161       ELSE IF( N.LT.0 ) THEN
162          INFO = -2
163       ELSE IF( LDA.LT.MAX1, N ) ) THEN
164          INFO = -4
165       ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
166          INFO = -9
167       END IF
168 *
169       IF( INFO.EQ.0 ) THEN
170 *
171 *        Determine the block size.
172 *
173          NB = ILAENV( 1'ZHETRD', UPLO, N, -1-1-1 )
174          LWKOPT = N*NB
175          WORK( 1 ) = LWKOPT
176       END IF
177 *
178       IF( INFO.NE.0 ) THEN
179          CALL XERBLA( 'ZHETRD'-INFO )
180          RETURN
181       ELSE IF( LQUERY ) THEN
182          RETURN
183       END IF
184 *
185 *     Quick return if possible
186 *
187       IF( N.EQ.0 ) THEN
188          WORK( 1 ) = 1
189          RETURN
190       END IF
191 *
192       NX = N
193       IWS = 1
194       IF( NB.GT.1 .AND. NB.LT.N ) THEN
195 *
196 *        Determine when to cross over from blocked to unblocked code
197 *        (last block is always handled by unblocked code).
198 *
199          NX = MAX( NB, ILAENV( 3'ZHETRD', UPLO, N, -1-1-1 ) )
200          IF( NX.LT.N ) THEN
201 *
202 *           Determine if workspace is large enough for blocked code.
203 *
204             LDWORK = N
205             IWS = LDWORK*NB
206             IF( LWORK.LT.IWS ) THEN
207 *
208 *              Not enough workspace to use optimal NB:  determine the
209 *              minimum value of NB, and reduce NB or force use of
210 *              unblocked code by setting NX = N.
211 *
212                NB = MAX( LWORK / LDWORK, 1 )
213                NBMIN = ILAENV( 2'ZHETRD', UPLO, N, -1-1-1 )
214                IF( NB.LT.NBMIN )
215      $            NX = N
216             END IF
217          ELSE
218             NX = N
219          END IF
220       ELSE
221          NB = 1
222       END IF
223 *
224       IF( UPPER ) THEN
225 *
226 *        Reduce the upper triangle of A.
227 *        Columns 1:kk are handled by the unblocked method.
228 *
229          KK = N - ( ( N-NX+NB-1 ) / NB )*NB
230          DO 20 I = N - NB + 1, KK + 1-NB
231 *
232 *           Reduce columns i:i+nb-1 to tridiagonal form and form the
233 *           matrix W which is needed to update the unreduced part of
234 *           the matrix
235 *
236             CALL ZLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
237      $                   LDWORK )
238 *
239 *           Update the unreduced submatrix A(1:i-1,1:i-1), using an
240 *           update of the form:  A := A - V*W**H - W*V**H
241 *
242             CALL ZHER2K( UPLO, 'No transpose', I-1, NB, -CONE,
243      $                   A( 1, I ), LDA, WORK, LDWORK, ONE, A, LDA )
244 *
245 *           Copy superdiagonal elements back into A, and diagonal
246 *           elements into D
247 *
248             DO 10 J = I, I + NB - 1
249                A( J-1, J ) = E( J-1 )
250                D( J ) = A( J, J )
251    10       CONTINUE
252    20    CONTINUE
253 *
254 *        Use unblocked code to reduce the last or only block
255 *
256          CALL ZHETD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
257       ELSE
258 *
259 *        Reduce the lower triangle of A
260 *
261          DO 40 I = 1, N - NX, NB
262 *
263 *           Reduce columns i:i+nb-1 to tridiagonal form and form the
264 *           matrix W which is needed to update the unreduced part of
265 *           the matrix
266 *
267             CALL ZLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
268      $                   TAU( I ), WORK, LDWORK )
269 *
270 *           Update the unreduced submatrix A(i+nb:n,i+nb:n), using
271 *           an update of the form:  A := A - V*W**H - W*V**H
272 *
273             CALL ZHER2K( UPLO, 'No transpose', N-I-NB+1, NB, -CONE,
274      $                   A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
275      $                   A( I+NB, I+NB ), LDA )
276 *
277 *           Copy subdiagonal elements back into A, and diagonal
278 *           elements into D
279 *
280             DO 30 J = I, I + NB - 1
281                A( J+1, J ) = E( J )
282                D( J ) = A( J, J )
283    30       CONTINUE
284    40    CONTINUE
285 *
286 *        Use unblocked code to reduce the last or only block
287 *
288          CALL ZHETD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
289      $                TAU( I ), IINFO )
290       END IF
291 *
292       WORK( 1 ) = LWKOPT
293       RETURN
294 *
295 *     End of ZHETRD
296 *
297       END