1       SUBROUTINE ZHETRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDA, LDB, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       COMPLEX*16         A( LDA, * ), B( LDB, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZHETRS solves a system of linear equations A*X = B with a complex
 21 *  Hermitian matrix A using the factorization A = U*D*U**H or
 22 *  A = L*D*L**H computed by ZHETRF.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          Specifies whether the details of the factorization are stored
 29 *          as an upper or lower triangular matrix.
 30 *          = 'U':  Upper triangular, form is A = U*D*U**H;
 31 *          = 'L':  Lower triangular, form is A = L*D*L**H.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  NRHS    (input) INTEGER
 37 *          The number of right hand sides, i.e., the number of columns
 38 *          of the matrix B.  NRHS >= 0.
 39 *
 40 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 41 *          The block diagonal matrix D and the multipliers used to
 42 *          obtain the factor U or L as computed by ZHETRF.
 43 *
 44 *  LDA     (input) INTEGER
 45 *          The leading dimension of the array A.  LDA >= max(1,N).
 46 *
 47 *  IPIV    (input) INTEGER array, dimension (N)
 48 *          Details of the interchanges and the block structure of D
 49 *          as determined by ZHETRF.
 50 *
 51 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 52 *          On entry, the right hand side matrix B.
 53 *          On exit, the solution matrix X.
 54 *
 55 *  LDB     (input) INTEGER
 56 *          The leading dimension of the array B.  LDB >= max(1,N).
 57 *
 58 *  INFO    (output) INTEGER
 59 *          = 0:  successful exit
 60 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 61 *
 62 *  =====================================================================
 63 *
 64 *     .. Parameters ..
 65       COMPLEX*16         ONE
 66       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
 67 *     ..
 68 *     .. Local Scalars ..
 69       LOGICAL            UPPER
 70       INTEGER            J, K, KP
 71       DOUBLE PRECISION   S
 72       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
 73 *     ..
 74 *     .. External Functions ..
 75       LOGICAL            LSAME
 76       EXTERNAL           LSAME
 77 *     ..
 78 *     .. External Subroutines ..
 79       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
 80 *     ..
 81 *     .. Intrinsic Functions ..
 82       INTRINSIC          DBLEDCONJGMAX
 83 *     ..
 84 *     .. Executable Statements ..
 85 *
 86       INFO = 0
 87       UPPER = LSAME( UPLO, 'U' )
 88       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 89          INFO = -1
 90       ELSE IF( N.LT.0 ) THEN
 91          INFO = -2
 92       ELSE IF( NRHS.LT.0 ) THEN
 93          INFO = -3
 94       ELSE IF( LDA.LT.MAX1, N ) ) THEN
 95          INFO = -5
 96       ELSE IF( LDB.LT.MAX1, N ) ) THEN
 97          INFO = -8
 98       END IF
 99       IF( INFO.NE.0 ) THEN
100          CALL XERBLA( 'ZHETRS'-INFO )
101          RETURN
102       END IF
103 *
104 *     Quick return if possible
105 *
106       IF( N.EQ.0 .OR. NRHS.EQ.0 )
107      $   RETURN
108 *
109       IF( UPPER ) THEN
110 *
111 *        Solve A*X = B, where A = U*D*U**H.
112 *
113 *        First solve U*D*X = B, overwriting B with X.
114 *
115 *        K is the main loop index, decreasing from N to 1 in steps of
116 *        1 or 2, depending on the size of the diagonal blocks.
117 *
118          K = N
119    10    CONTINUE
120 *
121 *        If K < 1, exit from loop.
122 *
123          IF( K.LT.1 )
124      $      GO TO 30
125 *
126          IF( IPIV( K ).GT.0 ) THEN
127 *
128 *           1 x 1 diagonal block
129 *
130 *           Interchange rows K and IPIV(K).
131 *
132             KP = IPIV( K )
133             IF( KP.NE.K )
134      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
135 *
136 *           Multiply by inv(U(K)), where U(K) is the transformation
137 *           stored in column K of A.
138 *
139             CALL ZGERU( K-1, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
140      $                  B( 11 ), LDB )
141 *
142 *           Multiply by the inverse of the diagonal block.
143 *
144             S = DBLE( ONE ) / DBLE( A( K, K ) )
145             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
146             K = K - 1
147          ELSE
148 *
149 *           2 x 2 diagonal block
150 *
151 *           Interchange rows K-1 and -IPIV(K).
152 *
153             KP = -IPIV( K )
154             IF( KP.NE.K-1 )
155      $         CALL ZSWAP( NRHS, B( K-11 ), LDB, B( KP, 1 ), LDB )
156 *
157 *           Multiply by inv(U(K)), where U(K) is the transformation
158 *           stored in columns K-1 and K of A.
159 *
160             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K ), 1, B( K, 1 ), LDB,
161      $                  B( 11 ), LDB )
162             CALL ZGERU( K-2, NRHS, -ONE, A( 1, K-1 ), 1, B( K-11 ),
163      $                  LDB, B( 11 ), LDB )
164 *
165 *           Multiply by the inverse of the diagonal block.
166 *
167             AKM1K = A( K-1, K )
168             AKM1 = A( K-1, K-1 ) / AKM1K
169             AK = A( K, K ) / DCONJG( AKM1K )
170             DENOM = AKM1*AK - ONE
171             DO 20 J = 1, NRHS
172                BKM1 = B( K-1, J ) / AKM1K
173                BK = B( K, J ) / DCONJG( AKM1K )
174                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
175                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
176    20       CONTINUE
177             K = K - 2
178          END IF
179 *
180          GO TO 10
181    30    CONTINUE
182 *
183 *        Next solve U**H *X = B, overwriting B with X.
184 *
185 *        K is the main loop index, increasing from 1 to N in steps of
186 *        1 or 2, depending on the size of the diagonal blocks.
187 *
188          K = 1
189    40    CONTINUE
190 *
191 *        If K > N, exit from loop.
192 *
193          IF( K.GT.N )
194      $      GO TO 50
195 *
196          IF( IPIV( K ).GT.0 ) THEN
197 *
198 *           1 x 1 diagonal block
199 *
200 *           Multiply by inv(U**H(K)), where U(K) is the transformation
201 *           stored in column K of A.
202 *
203             IF( K.GT.1 ) THEN
204                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
205                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
206      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
207                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
208             END IF
209 *
210 *           Interchange rows K and IPIV(K).
211 *
212             KP = IPIV( K )
213             IF( KP.NE.K )
214      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
215             K = K + 1
216          ELSE
217 *
218 *           2 x 2 diagonal block
219 *
220 *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
221 *           stored in columns K and K+1 of A.
222 *
223             IF( K.GT.1 ) THEN
224                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
225                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
226      $                     LDB, A( 1, K ), 1, ONE, B( K, 1 ), LDB )
227                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
228 *
229                CALL ZLACGV( NRHS, B( K+11 ), LDB )
230                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
231      $                     LDB, A( 1, K+1 ), 1, ONE, B( K+11 ), LDB )
232                CALL ZLACGV( NRHS, B( K+11 ), LDB )
233             END IF
234 *
235 *           Interchange rows K and -IPIV(K).
236 *
237             KP = -IPIV( K )
238             IF( KP.NE.K )
239      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
240             K = K + 2
241          END IF
242 *
243          GO TO 40
244    50    CONTINUE
245 *
246       ELSE
247 *
248 *        Solve A*X = B, where A = L*D*L**H.
249 *
250 *        First solve L*D*X = B, overwriting B with X.
251 *
252 *        K is the main loop index, increasing from 1 to N in steps of
253 *        1 or 2, depending on the size of the diagonal blocks.
254 *
255          K = 1
256    60    CONTINUE
257 *
258 *        If K > N, exit from loop.
259 *
260          IF( K.GT.N )
261      $      GO TO 80
262 *
263          IF( IPIV( K ).GT.0 ) THEN
264 *
265 *           1 x 1 diagonal block
266 *
267 *           Interchange rows K and IPIV(K).
268 *
269             KP = IPIV( K )
270             IF( KP.NE.K )
271      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
272 *
273 *           Multiply by inv(L(K)), where L(K) is the transformation
274 *           stored in column K of A.
275 *
276             IF( K.LT.N )
277      $         CALL ZGERU( N-K, NRHS, -ONE, A( K+1, K ), 1, B( K, 1 ),
278      $                     LDB, B( K+11 ), LDB )
279 *
280 *           Multiply by the inverse of the diagonal block.
281 *
282             S = DBLE( ONE ) / DBLE( A( K, K ) )
283             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
284             K = K + 1
285          ELSE
286 *
287 *           2 x 2 diagonal block
288 *
289 *           Interchange rows K+1 and -IPIV(K).
290 *
291             KP = -IPIV( K )
292             IF( KP.NE.K+1 )
293      $         CALL ZSWAP( NRHS, B( K+11 ), LDB, B( KP, 1 ), LDB )
294 *
295 *           Multiply by inv(L(K)), where L(K) is the transformation
296 *           stored in columns K and K+1 of A.
297 *
298             IF( K.LT.N-1 ) THEN
299                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K ), 1, B( K, 1 ),
300      $                     LDB, B( K+21 ), LDB )
301                CALL ZGERU( N-K-1, NRHS, -ONE, A( K+2, K+1 ), 1,
302      $                     B( K+11 ), LDB, B( K+21 ), LDB )
303             END IF
304 *
305 *           Multiply by the inverse of the diagonal block.
306 *
307             AKM1K = A( K+1, K )
308             AKM1 = A( K, K ) / DCONJG( AKM1K )
309             AK = A( K+1, K+1 ) / AKM1K
310             DENOM = AKM1*AK - ONE
311             DO 70 J = 1, NRHS
312                BKM1 = B( K, J ) / DCONJG( AKM1K )
313                BK = B( K+1, J ) / AKM1K
314                B( K, J ) = ( AK*BKM1-BK ) / DENOM
315                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
316    70       CONTINUE
317             K = K + 2
318          END IF
319 *
320          GO TO 60
321    80    CONTINUE
322 *
323 *        Next solve L**H *X = B, overwriting B with X.
324 *
325 *        K is the main loop index, decreasing from N to 1 in steps of
326 *        1 or 2, depending on the size of the diagonal blocks.
327 *
328          K = N
329    90    CONTINUE
330 *
331 *        If K < 1, exit from loop.
332 *
333          IF( K.LT.1 )
334      $      GO TO 100
335 *
336          IF( IPIV( K ).GT.0 ) THEN
337 *
338 *           1 x 1 diagonal block
339 *
340 *           Multiply by inv(L**H(K)), where L(K) is the transformation
341 *           stored in column K of A.
342 *
343             IF( K.LT.N ) THEN
344                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
345                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
346      $                     B( K+11 ), LDB, A( K+1, K ), 1, ONE,
347      $                     B( K, 1 ), LDB )
348                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
349             END IF
350 *
351 *           Interchange rows K and IPIV(K).
352 *
353             KP = IPIV( K )
354             IF( KP.NE.K )
355      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
356             K = K - 1
357          ELSE
358 *
359 *           2 x 2 diagonal block
360 *
361 *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
362 *           stored in columns K-1 and K of A.
363 *
364             IF( K.LT.N ) THEN
365                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
366                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
367      $                     B( K+11 ), LDB, A( K+1, K ), 1, ONE,
368      $                     B( K, 1 ), LDB )
369                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
370 *
371                CALL ZLACGV( NRHS, B( K-11 ), LDB )
372                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
373      $                     B( K+11 ), LDB, A( K+1, K-1 ), 1, ONE,
374      $                     B( K-11 ), LDB )
375                CALL ZLACGV( NRHS, B( K-11 ), LDB )
376             END IF
377 *
378 *           Interchange rows K and -IPIV(K).
379 *
380             KP = -IPIV( K )
381             IF( KP.NE.K )
382      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
383             K = K - 2
384          END IF
385 *
386          GO TO 90
387   100    CONTINUE
388       END IF
389 *
390       RETURN
391 *
392 *     End of ZHETRS
393 *
394       END