1       SUBROUTINE ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK,
  2      $                  INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, LDZ, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * ), W( * )
 15       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZHPEV computes all the eigenvalues and, optionally, eigenvectors of a
 22 *  complex Hermitian matrix in packed storage.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  JOBZ    (input) CHARACTER*1
 28 *          = 'N':  Compute eigenvalues only;
 29 *          = 'V':  Compute eigenvalues and eigenvectors.
 30 *
 31 *  UPLO    (input) CHARACTER*1
 32 *          = 'U':  Upper triangle of A is stored;
 33 *          = 'L':  Lower triangle of A is stored.
 34 *
 35 *  N       (input) INTEGER
 36 *          The order of the matrix A.  N >= 0.
 37 *
 38 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 39 *          On entry, the upper or lower triangle of the Hermitian matrix
 40 *          A, packed columnwise in a linear array.  The j-th column of A
 41 *          is stored in the array AP as follows:
 42 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 43 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 44 *
 45 *          On exit, AP is overwritten by values generated during the
 46 *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
 47 *          and first superdiagonal of the tridiagonal matrix T overwrite
 48 *          the corresponding elements of A, and if UPLO = 'L', the
 49 *          diagonal and first subdiagonal of T overwrite the
 50 *          corresponding elements of A.
 51 *
 52 *  W       (output) DOUBLE PRECISION array, dimension (N)
 53 *          If INFO = 0, the eigenvalues in ascending order.
 54 *
 55 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
 56 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 57 *          eigenvectors of the matrix A, with the i-th column of Z
 58 *          holding the eigenvector associated with W(i).
 59 *          If JOBZ = 'N', then Z is not referenced.
 60 *
 61 *  LDZ     (input) INTEGER
 62 *          The leading dimension of the array Z.  LDZ >= 1, and if
 63 *          JOBZ = 'V', LDZ >= max(1,N).
 64 *
 65 *  WORK    (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))
 66 *
 67 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
 68 *
 69 *  INFO    (output) INTEGER
 70 *          = 0:  successful exit.
 71 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
 72 *          > 0:  if INFO = i, the algorithm failed to converge; i
 73 *                off-diagonal elements of an intermediate tridiagonal
 74 *                form did not converge to zero.
 75 *
 76 *  =====================================================================
 77 *
 78 *     .. Parameters ..
 79       DOUBLE PRECISION   ZERO, ONE
 80       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 81 *     ..
 82 *     .. Local Scalars ..
 83       LOGICAL            WANTZ
 84       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
 85      $                   ISCALE
 86       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 87      $                   SMLNUM
 88 *     ..
 89 *     .. External Functions ..
 90       LOGICAL            LSAME
 91       DOUBLE PRECISION   DLAMCH, ZLANHP
 92       EXTERNAL           LSAME, DLAMCH, ZLANHP
 93 *     ..
 94 *     .. External Subroutines ..
 95       EXTERNAL           DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEQR,
 96      $                   ZUPGTR
 97 *     ..
 98 *     .. Intrinsic Functions ..
 99       INTRINSIC          SQRT
100 *     ..
101 *     .. Executable Statements ..
102 *
103 *     Test the input parameters.
104 *
105       WANTZ = LSAME( JOBZ, 'V' )
106 *
107       INFO = 0
108       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
109          INFO = -1
110       ELSE IF.NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
111      $          THEN
112          INFO = -2
113       ELSE IF( N.LT.0 ) THEN
114          INFO = -3
115       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
116          INFO = -7
117       END IF
118 *
119       IF( INFO.NE.0 ) THEN
120          CALL XERBLA( 'ZHPEV '-INFO )
121          RETURN
122       END IF
123 *
124 *     Quick return if possible
125 *
126       IF( N.EQ.0 )
127      $   RETURN
128 *
129       IF( N.EQ.1 ) THEN
130          W( 1 ) = AP( 1 )
131          RWORK( 1 ) = 1
132          IF( WANTZ )
133      $      Z( 11 ) = ONE
134          RETURN
135       END IF
136 *
137 *     Get machine constants.
138 *
139       SAFMIN = DLAMCH( 'Safe minimum' )
140       EPS = DLAMCH( 'Precision' )
141       SMLNUM = SAFMIN / EPS
142       BIGNUM = ONE / SMLNUM
143       RMIN = SQRT( SMLNUM )
144       RMAX = SQRT( BIGNUM )
145 *
146 *     Scale matrix to allowable range, if necessary.
147 *
148       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
149       ISCALE = 0
150       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
151          ISCALE = 1
152          SIGMA = RMIN / ANRM
153       ELSE IF( ANRM.GT.RMAX ) THEN
154          ISCALE = 1
155          SIGMA = RMAX / ANRM
156       END IF
157       IF( ISCALE.EQ.1 ) THEN
158          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
159       END IF
160 *
161 *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
162 *
163       INDE = 1
164       INDTAU = 1
165       CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
166      $             IINFO )
167 *
168 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
169 *     ZUPGTR to generate the orthogonal matrix, then call ZSTEQR.
170 *
171       IF.NOT.WANTZ ) THEN
172          CALL DSTERF( N, W, RWORK( INDE ), INFO )
173       ELSE
174          INDWRK = INDTAU + N
175          CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
176      $                WORK( INDWRK ), IINFO )
177          INDRWK = INDE + N
178          CALL ZSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
179      $                RWORK( INDRWK ), INFO )
180       END IF
181 *
182 *     If matrix was scaled, then rescale eigenvalues appropriately.
183 *
184       IF( ISCALE.EQ.1 ) THEN
185          IF( INFO.EQ.0 ) THEN
186             IMAX = N
187          ELSE
188             IMAX = INFO - 1
189          END IF
190          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
191       END IF
192 *
193       RETURN
194 *
195 *     End of ZHPEV
196 *
197       END