1       SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
  2      $                   RWORK, LRWORK, IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, LDZ, LIWORK, LRWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   RWORK( * ), W( * )
 16       COMPLEX*16         AP( * ), WORK( * ), Z( LDZ, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
 23 *  a complex Hermitian matrix A in packed storage.  If eigenvectors are
 24 *  desired, it uses a divide and conquer algorithm.
 25 *
 26 *  The divide and conquer algorithm makes very mild assumptions about
 27 *  floating point arithmetic. It will work on machines with a guard
 28 *  digit in add/subtract, or on those binary machines without guard
 29 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 30 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 31 *  without guard digits, but we know of none.
 32 *
 33 *  Arguments
 34 *  =========
 35 *
 36 *  JOBZ    (input) CHARACTER*1
 37 *          = 'N':  Compute eigenvalues only;
 38 *          = 'V':  Compute eigenvalues and eigenvectors.
 39 *
 40 *  UPLO    (input) CHARACTER*1
 41 *          = 'U':  Upper triangle of A is stored;
 42 *          = 'L':  Lower triangle of A is stored.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrix A.  N >= 0.
 46 *
 47 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 48 *          On entry, the upper or lower triangle of the Hermitian matrix
 49 *          A, packed columnwise in a linear array.  The j-th column of A
 50 *          is stored in the array AP as follows:
 51 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 52 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 53 *
 54 *          On exit, AP is overwritten by values generated during the
 55 *          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
 56 *          and first superdiagonal of the tridiagonal matrix T overwrite
 57 *          the corresponding elements of A, and if UPLO = 'L', the
 58 *          diagonal and first subdiagonal of T overwrite the
 59 *          corresponding elements of A.
 60 *
 61 *  W       (output) DOUBLE PRECISION array, dimension (N)
 62 *          If INFO = 0, the eigenvalues in ascending order.
 63 *
 64 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
 65 *          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 66 *          eigenvectors of the matrix A, with the i-th column of Z
 67 *          holding the eigenvector associated with W(i).
 68 *          If JOBZ = 'N', then Z is not referenced.
 69 *
 70 *  LDZ     (input) INTEGER
 71 *          The leading dimension of the array Z.  LDZ >= 1, and if
 72 *          JOBZ = 'V', LDZ >= max(1,N).
 73 *
 74 *  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
 75 *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 76 *
 77 *  LWORK   (input) INTEGER
 78 *          The dimension of array WORK.
 79 *          If N <= 1,               LWORK must be at least 1.
 80 *          If JOBZ = 'N' and N > 1, LWORK must be at least N.
 81 *          If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
 82 *
 83 *          If LWORK = -1, then a workspace query is assumed; the routine
 84 *          only calculates the required sizes of the WORK, RWORK and
 85 *          IWORK arrays, returns these values as the first entries of
 86 *          the WORK, RWORK and IWORK arrays, and no error message
 87 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
 88 *
 89 *  RWORK   (workspace/output) DOUBLE PRECISION array,
 90 *                                         dimension (LRWORK)
 91 *          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
 92 *
 93 *  LRWORK  (input) INTEGER
 94 *          The dimension of array RWORK.
 95 *          If N <= 1,               LRWORK must be at least 1.
 96 *          If JOBZ = 'N' and N > 1, LRWORK must be at least N.
 97 *          If JOBZ = 'V' and N > 1, LRWORK must be at least
 98 *                    1 + 5*N + 2*N**2.
 99 *
100 *          If LRWORK = -1, then a workspace query is assumed; the
101 *          routine only calculates the required sizes of the WORK, RWORK
102 *          and IWORK arrays, returns these values as the first entries
103 *          of the WORK, RWORK and IWORK arrays, and no error message
104 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
105 *
106 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
107 *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
108 *
109 *  LIWORK  (input) INTEGER
110 *          The dimension of array IWORK.
111 *          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
112 *          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
113 *
114 *          If LIWORK = -1, then a workspace query is assumed; the
115 *          routine only calculates the required sizes of the WORK, RWORK
116 *          and IWORK arrays, returns these values as the first entries
117 *          of the WORK, RWORK and IWORK arrays, and no error message
118 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
119 *
120 *  INFO    (output) INTEGER
121 *          = 0:  successful exit
122 *          < 0:  if INFO = -i, the i-th argument had an illegal value.
123 *          > 0:  if INFO = i, the algorithm failed to converge; i
124 *                off-diagonal elements of an intermediate tridiagonal
125 *                form did not converge to zero.
126 *
127 *  =====================================================================
128 *
129 *     .. Parameters ..
130       DOUBLE PRECISION   ZERO, ONE
131       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
132       COMPLEX*16         CONE
133       PARAMETER          ( CONE = ( 1.0D+00.0D+0 ) )
134 *     ..
135 *     .. Local Scalars ..
136       LOGICAL            LQUERY, WANTZ
137       INTEGER            IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
138      $                   ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
139       DOUBLE PRECISION   ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
140      $                   SMLNUM
141 *     ..
142 *     .. External Functions ..
143       LOGICAL            LSAME
144       DOUBLE PRECISION   DLAMCH, ZLANHP
145       EXTERNAL           LSAME, DLAMCH, ZLANHP
146 *     ..
147 *     .. External Subroutines ..
148       EXTERNAL           DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEDC,
149      $                   ZUPMTR
150 *     ..
151 *     .. Intrinsic Functions ..
152       INTRINSIC          SQRT
153 *     ..
154 *     .. Executable Statements ..
155 *
156 *     Test the input parameters.
157 *
158       WANTZ = LSAME( JOBZ, 'V' )
159       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
160 *
161       INFO = 0
162       IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
163          INFO = -1
164       ELSE IF.NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
165      $          THEN
166          INFO = -2
167       ELSE IF( N.LT.0 ) THEN
168          INFO = -3
169       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
170          INFO = -7
171       END IF
172 *
173       IF( INFO.EQ.0 ) THEN
174          IF( N.LE.1 ) THEN
175             LWMIN = 1
176             LIWMIN = 1
177             LRWMIN = 1
178          ELSE
179             IF( WANTZ ) THEN
180                LWMIN = 2*N
181                LRWMIN = 1 + 5*+ 2*N**2
182                LIWMIN = 3 + 5*N
183             ELSE
184                LWMIN = N
185                LRWMIN = N
186                LIWMIN = 1
187             END IF
188          END IF
189          WORK( 1 ) = LWMIN
190          RWORK( 1 ) = LRWMIN
191          IWORK( 1 ) = LIWMIN
192 *
193          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
194             INFO = -9
195          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
196             INFO = -11
197          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
198             INFO = -13
199          END IF
200       END IF
201 *
202       IF( INFO.NE.0 ) THEN
203          CALL XERBLA( 'ZHPEVD'-INFO )
204          RETURN
205       ELSE IF( LQUERY ) THEN
206          RETURN
207       END IF
208 *
209 *     Quick return if possible
210 *
211       IF( N.EQ.0 )
212      $   RETURN
213 *
214       IF( N.EQ.1 ) THEN
215          W( 1 ) = AP( 1 )
216          IF( WANTZ )
217      $      Z( 11 ) = CONE
218          RETURN
219       END IF
220 *
221 *     Get machine constants.
222 *
223       SAFMIN = DLAMCH( 'Safe minimum' )
224       EPS = DLAMCH( 'Precision' )
225       SMLNUM = SAFMIN / EPS
226       BIGNUM = ONE / SMLNUM
227       RMIN = SQRT( SMLNUM )
228       RMAX = SQRT( BIGNUM )
229 *
230 *     Scale matrix to allowable range, if necessary.
231 *
232       ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
233       ISCALE = 0
234       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
235          ISCALE = 1
236          SIGMA = RMIN / ANRM
237       ELSE IF( ANRM.GT.RMAX ) THEN
238          ISCALE = 1
239          SIGMA = RMAX / ANRM
240       END IF
241       IF( ISCALE.EQ.1 ) THEN
242          CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
243       END IF
244 *
245 *     Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
246 *
247       INDE = 1
248       INDTAU = 1
249       INDRWK = INDE + N
250       INDWRK = INDTAU + N
251       LLWRK = LWORK - INDWRK + 1
252       LLRWK = LRWORK - INDRWK + 1
253       CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
254      $             IINFO )
255 *
256 *     For eigenvalues only, call DSTERF.  For eigenvectors, first call
257 *     ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
258 *
259       IF.NOT.WANTZ ) THEN
260          CALL DSTERF( N, W, RWORK( INDE ), INFO )
261       ELSE
262          CALL ZSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
263      $                LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
264      $                INFO )
265          CALL ZUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
266      $                WORK( INDWRK ), IINFO )
267       END IF
268 *
269 *     If matrix was scaled, then rescale eigenvalues appropriately.
270 *
271       IF( ISCALE.EQ.1 ) THEN
272          IF( INFO.EQ.0 ) THEN
273             IMAX = N
274          ELSE
275             IMAX = INFO - 1
276          END IF
277          CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
278       END IF
279 *
280       WORK( 1 ) = LWMIN
281       RWORK( 1 ) = LRWMIN
282       IWORK( 1 ) = LIWMIN
283       RETURN
284 *
285 *     End of ZHPEVD
286 *
287       END