1       SUBROUTINE ZHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  2      $                  RWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, ITYPE, LDZ, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   RWORK( * ), W( * )
 15       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
 22 *  of a complex generalized Hermitian-definite eigenproblem, of the form
 23 *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 24 *  Here A and B are assumed to be Hermitian, stored in packed format,
 25 *  and B is also positive definite.
 26 *
 27 *  Arguments
 28 *  =========
 29 *
 30 *  ITYPE   (input) INTEGER
 31 *          Specifies the problem type to be solved:
 32 *          = 1:  A*x = (lambda)*B*x
 33 *          = 2:  A*B*x = (lambda)*x
 34 *          = 3:  B*A*x = (lambda)*x
 35 *
 36 *  JOBZ    (input) CHARACTER*1
 37 *          = 'N':  Compute eigenvalues only;
 38 *          = 'V':  Compute eigenvalues and eigenvectors.
 39 *
 40 *  UPLO    (input) CHARACTER*1
 41 *          = 'U':  Upper triangles of A and B are stored;
 42 *          = 'L':  Lower triangles of A and B are stored.
 43 *
 44 *  N       (input) INTEGER
 45 *          The order of the matrices A and B.  N >= 0.
 46 *
 47 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 48 *          On entry, the upper or lower triangle of the Hermitian matrix
 49 *          A, packed columnwise in a linear array.  The j-th column of A
 50 *          is stored in the array AP as follows:
 51 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 52 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 53 *
 54 *          On exit, the contents of AP are destroyed.
 55 *
 56 *  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 57 *          On entry, the upper or lower triangle of the Hermitian matrix
 58 *          B, packed columnwise in a linear array.  The j-th column of B
 59 *          is stored in the array BP as follows:
 60 *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 61 *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 62 *
 63 *          On exit, the triangular factor U or L from the Cholesky
 64 *          factorization B = U**H*U or B = L*L**H, in the same storage
 65 *          format as B.
 66 *
 67 *  W       (output) DOUBLE PRECISION array, dimension (N)
 68 *          If INFO = 0, the eigenvalues in ascending order.
 69 *
 70 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
 71 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 72 *          eigenvectors.  The eigenvectors are normalized as follows:
 73 *          if ITYPE = 1 or 2, Z**H*B*Z = I;
 74 *          if ITYPE = 3, Z**H*inv(B)*Z = I.
 75 *          If JOBZ = 'N', then Z is not referenced.
 76 *
 77 *  LDZ     (input) INTEGER
 78 *          The leading dimension of the array Z.  LDZ >= 1, and if
 79 *          JOBZ = 'V', LDZ >= max(1,N).
 80 *
 81 *  WORK    (workspace) COMPLEX*16 array, dimension (max(1, 2*N-1))
 82 *
 83 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (max(1, 3*N-2))
 84 *
 85 *  INFO    (output) INTEGER
 86 *          = 0:  successful exit
 87 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 88 *          > 0:  ZPPTRF or ZHPEV returned an error code:
 89 *             <= N:  if INFO = i, ZHPEV failed to converge;
 90 *                    i off-diagonal elements of an intermediate
 91 *                    tridiagonal form did not convergeto zero;
 92 *             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
 93 *                    minor of order i of B is not positive definite.
 94 *                    The factorization of B could not be completed and
 95 *                    no eigenvalues or eigenvectors were computed.
 96 *
 97 *  =====================================================================
 98 *
 99 *     .. Local Scalars ..
100       LOGICAL            UPPER, WANTZ
101       CHARACTER          TRANS
102       INTEGER            J, NEIG
103 *     ..
104 *     .. External Functions ..
105       LOGICAL            LSAME
106       EXTERNAL           LSAME
107 *     ..
108 *     .. External Subroutines ..
109       EXTERNAL           XERBLA, ZHPEV, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
110 *     ..
111 *     .. Executable Statements ..
112 *
113 *     Test the input parameters.
114 *
115       WANTZ = LSAME( JOBZ, 'V' )
116       UPPER = LSAME( UPLO, 'U' )
117 *
118       INFO = 0
119       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
120          INFO = -1
121       ELSE IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
122          INFO = -2
123       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
124          INFO = -3
125       ELSE IF( N.LT.0 ) THEN
126          INFO = -4
127       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
128          INFO = -9
129       END IF
130       IF( INFO.NE.0 ) THEN
131          CALL XERBLA( 'ZHPGV '-INFO )
132          RETURN
133       END IF
134 *
135 *     Quick return if possible
136 *
137       IF( N.EQ.0 )
138      $   RETURN
139 *
140 *     Form a Cholesky factorization of B.
141 *
142       CALL ZPPTRF( UPLO, N, BP, INFO )
143       IF( INFO.NE.0 ) THEN
144          INFO = N + INFO
145          RETURN
146       END IF
147 *
148 *     Transform problem to standard eigenvalue problem and solve.
149 *
150       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
151       CALL ZHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO )
152 *
153       IF( WANTZ ) THEN
154 *
155 *        Backtransform eigenvectors to the original problem.
156 *
157          NEIG = N
158          IF( INFO.GT.0 )
159      $      NEIG = INFO - 1
160          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
161 *
162 *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
163 *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
164 *
165             IF( UPPER ) THEN
166                TRANS = 'N'
167             ELSE
168                TRANS = 'C'
169             END IF
170 *
171             DO 10 J = 1, NEIG
172                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
173      $                     1 )
174    10       CONTINUE
175 *
176          ELSE IF( ITYPE.EQ.3 ) THEN
177 *
178 *           For B*A*x=(lambda)*x;
179 *           backtransform eigenvectors: x = L*y or U**H *y
180 *
181             IF( UPPER ) THEN
182                TRANS = 'C'
183             ELSE
184                TRANS = 'N'
185             END IF
186 *
187             DO 20 J = 1, NEIG
188                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
189      $                     1 )
190    20       CONTINUE
191          END IF
192       END IF
193       RETURN
194 *
195 *     End of ZHPGV
196 *
197       END