1       SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
  2      $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          JOBZ, UPLO
 11       INTEGER            INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       INTEGER            IWORK( * )
 15       DOUBLE PRECISION   RWORK( * ), W( * )
 16       COMPLEX*16         AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
 23 *  of a complex generalized Hermitian-definite eigenproblem, of the form
 24 *  A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 25 *  B are assumed to be Hermitian, stored in packed format, and B is also
 26 *  positive definite.
 27 *  If eigenvectors are desired, it uses a divide and conquer algorithm.
 28 *
 29 *  The divide and conquer algorithm makes very mild assumptions about
 30 *  floating point arithmetic. It will work on machines with a guard
 31 *  digit in add/subtract, or on those binary machines without guard
 32 *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 33 *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
 34 *  without guard digits, but we know of none.
 35 *
 36 *  Arguments
 37 *  =========
 38 *
 39 *  ITYPE   (input) INTEGER
 40 *          Specifies the problem type to be solved:
 41 *          = 1:  A*x = (lambda)*B*x
 42 *          = 2:  A*B*x = (lambda)*x
 43 *          = 3:  B*A*x = (lambda)*x
 44 *
 45 *  JOBZ    (input) CHARACTER*1
 46 *          = 'N':  Compute eigenvalues only;
 47 *          = 'V':  Compute eigenvalues and eigenvectors.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          = 'U':  Upper triangles of A and B are stored;
 51 *          = 'L':  Lower triangles of A and B are stored.
 52 *
 53 *  N       (input) INTEGER
 54 *          The order of the matrices A and B.  N >= 0.
 55 *
 56 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 57 *          On entry, the upper or lower triangle of the Hermitian matrix
 58 *          A, packed columnwise in a linear array.  The j-th column of A
 59 *          is stored in the array AP as follows:
 60 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 61 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 62 *
 63 *          On exit, the contents of AP are destroyed.
 64 *
 65 *  BP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 66 *          On entry, the upper or lower triangle of the Hermitian matrix
 67 *          B, packed columnwise in a linear array.  The j-th column of B
 68 *          is stored in the array BP as follows:
 69 *          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 70 *          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 71 *
 72 *          On exit, the triangular factor U or L from the Cholesky
 73 *          factorization B = U**H*U or B = L*L**H, in the same storage
 74 *          format as B.
 75 *
 76 *  W       (output) DOUBLE PRECISION array, dimension (N)
 77 *          If INFO = 0, the eigenvalues in ascending order.
 78 *
 79 *  Z       (output) COMPLEX*16 array, dimension (LDZ, N)
 80 *          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 81 *          eigenvectors.  The eigenvectors are normalized as follows:
 82 *          if ITYPE = 1 or 2, Z**H*B*Z = I;
 83 *          if ITYPE = 3, Z**H*inv(B)*Z = I.
 84 *          If JOBZ = 'N', then Z is not referenced.
 85 *
 86 *  LDZ     (input) INTEGER
 87 *          The leading dimension of the array Z.  LDZ >= 1, and if
 88 *          JOBZ = 'V', LDZ >= max(1,N).
 89 *
 90 *  WORK    (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
 91 *          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 92 *
 93 *  LWORK   (input) INTEGER
 94 *          The dimension of the array WORK.
 95 *          If N <= 1,               LWORK >= 1.
 96 *          If JOBZ = 'N' and N > 1, LWORK >= N.
 97 *          If JOBZ = 'V' and N > 1, LWORK >= 2*N.
 98 *
 99 *          If LWORK = -1, then a workspace query is assumed; the routine
100 *          only calculates the required sizes of the WORK, RWORK and
101 *          IWORK arrays, returns these values as the first entries of
102 *          the WORK, RWORK and IWORK arrays, and no error message
103 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
104 *
105 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
106 *          On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
107 *
108 *  LRWORK  (input) INTEGER
109 *          The dimension of array RWORK.
110 *          If N <= 1,               LRWORK >= 1.
111 *          If JOBZ = 'N' and N > 1, LRWORK >= N.
112 *          If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
113 *
114 *          If LRWORK = -1, then a workspace query is assumed; the
115 *          routine only calculates the required sizes of the WORK, RWORK
116 *          and IWORK arrays, returns these values as the first entries
117 *          of the WORK, RWORK and IWORK arrays, and no error message
118 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
119 *
120 *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
121 *          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
122 *
123 *  LIWORK  (input) INTEGER
124 *          The dimension of array IWORK.
125 *          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
126 *          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
127 *
128 *          If LIWORK = -1, then a workspace query is assumed; the
129 *          routine only calculates the required sizes of the WORK, RWORK
130 *          and IWORK arrays, returns these values as the first entries
131 *          of the WORK, RWORK and IWORK arrays, and no error message
132 *          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
133 *
134 *  INFO    (output) INTEGER
135 *          = 0:  successful exit
136 *          < 0:  if INFO = -i, the i-th argument had an illegal value
137 *          > 0:  ZPPTRF or ZHPEVD returned an error code:
138 *             <= N:  if INFO = i, ZHPEVD failed to converge;
139 *                    i off-diagonal elements of an intermediate
140 *                    tridiagonal form did not convergeto zero;
141 *             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
142 *                    minor of order i of B is not positive definite.
143 *                    The factorization of B could not be completed and
144 *                    no eigenvalues or eigenvectors were computed.
145 *
146 *  Further Details
147 *  ===============
148 *
149 *  Based on contributions by
150 *     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
151 *
152 *  =====================================================================
153 *
154 *     .. Local Scalars ..
155       LOGICAL            LQUERY, UPPER, WANTZ
156       CHARACTER          TRANS
157       INTEGER            J, LIWMIN, LRWMIN, LWMIN, NEIG
158 *     ..
159 *     .. External Functions ..
160       LOGICAL            LSAME
161       EXTERNAL           LSAME
162 *     ..
163 *     .. External Subroutines ..
164       EXTERNAL           XERBLA, ZHPEVD, ZHPGST, ZPPTRF, ZTPMV, ZTPSV
165 *     ..
166 *     .. Intrinsic Functions ..
167       INTRINSIC          DBLEMAX
168 *     ..
169 *     .. Executable Statements ..
170 *
171 *     Test the input parameters.
172 *
173       WANTZ = LSAME( JOBZ, 'V' )
174       UPPER = LSAME( UPLO, 'U' )
175       LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
176 *
177       INFO = 0
178       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
179          INFO = -1
180       ELSE IF.NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
181          INFO = -2
182       ELSE IF.NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
183          INFO = -3
184       ELSE IF( N.LT.0 ) THEN
185          INFO = -4
186       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
187          INFO = -9
188       END IF
189 *
190       IF( INFO.EQ.0 ) THEN
191          IF( N.LE.1 ) THEN
192             LWMIN = 1
193             LIWMIN = 1
194             LRWMIN = 1
195          ELSE
196             IF( WANTZ ) THEN
197                LWMIN = 2*N
198                LRWMIN = 1 + 5*+ 2*N**2
199                LIWMIN = 3 + 5*N
200             ELSE
201                LWMIN = N
202                LRWMIN = N
203                LIWMIN = 1
204             END IF
205          END IF
206 *
207          WORK( 1 ) = LWMIN
208          RWORK( 1 ) = LRWMIN
209          IWORK( 1 ) = LIWMIN
210          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
211             INFO = -11
212          ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
213             INFO = -13
214          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
215             INFO = -15
216          END IF
217       END IF
218 *
219       IF( INFO.NE.0 ) THEN
220          CALL XERBLA( 'ZHPGVD'-INFO )
221          RETURN
222       ELSE IF( LQUERY ) THEN
223          RETURN
224       END IF
225 *
226 *     Quick return if possible
227 *
228       IF( N.EQ.0 )
229      $   RETURN
230 *
231 *     Form a Cholesky factorization of B.
232 *
233       CALL ZPPTRF( UPLO, N, BP, INFO )
234       IF( INFO.NE.0 ) THEN
235          INFO = N + INFO
236          RETURN
237       END IF
238 *
239 *     Transform problem to standard eigenvalue problem and solve.
240 *
241       CALL ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
242       CALL ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, RWORK,
243      $             LRWORK, IWORK, LIWORK, INFO )
244       LWMIN = MAXDBLE( LWMIN ), DBLE( WORK( 1 ) ) )
245       LRWMIN = MAXDBLE( LRWMIN ), DBLE( RWORK( 1 ) ) )
246       LIWMIN = MAXDBLE( LIWMIN ), DBLE( IWORK( 1 ) ) )
247 *
248       IF( WANTZ ) THEN
249 *
250 *        Backtransform eigenvectors to the original problem.
251 *
252          NEIG = N
253          IF( INFO.GT.0 )
254      $      NEIG = INFO - 1
255          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
256 *
257 *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
258 *           backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
259 *
260             IF( UPPER ) THEN
261                TRANS = 'N'
262             ELSE
263                TRANS = 'C'
264             END IF
265 *
266             DO 10 J = 1, NEIG
267                CALL ZTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
268      $                     1 )
269    10       CONTINUE
270 *
271          ELSE IF( ITYPE.EQ.3 ) THEN
272 *
273 *           For B*A*x=(lambda)*x;
274 *           backtransform eigenvectors: x = L*y or U**H *y
275 *
276             IF( UPPER ) THEN
277                TRANS = 'C'
278             ELSE
279                TRANS = 'N'
280             END IF
281 *
282             DO 20 J = 1, NEIG
283                CALL ZTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
284      $                     1 )
285    20       CONTINUE
286          END IF
287       END IF
288 *
289       WORK( 1 ) = LWMIN
290       RWORK( 1 ) = LRWMIN
291       IWORK( 1 ) = LIWMIN
292       RETURN
293 *
294 *     End of ZHPGVD
295 *
296       END