1       SUBROUTINE ZHPSVX( FACT, UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X,
  2      $                   LDX, RCOND, FERR, BERR, WORK, RWORK, INFO )
  3 *
  4 *  -- LAPACK driver routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          FACT, UPLO
 11       INTEGER            INFO, LDB, LDX, N, NRHS
 12       DOUBLE PRECISION   RCOND
 13 *     ..
 14 *     .. Array Arguments ..
 15       INTEGER            IPIV( * )
 16       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
 17       COMPLEX*16         AFP( * ), AP( * ), B( LDB, * ), WORK( * ),
 18      $                   X( LDX, * )
 19 *     ..
 20 *
 21 *  Purpose
 22 *  =======
 23 *
 24 *  ZHPSVX uses the diagonal pivoting factorization A = U*D*U**H or
 25 *  A = L*D*L**H to compute the solution to a complex system of linear
 26 *  equations A * X = B, where A is an N-by-N Hermitian matrix stored
 27 *  in packed format and X and B are N-by-NRHS matrices.
 28 *
 29 *  Error bounds on the solution and a condition estimate are also
 30 *  provided.
 31 *
 32 *  Description
 33 *  ===========
 34 *
 35 *  The following steps are performed:
 36 *
 37 *  1. If FACT = 'N', the diagonal pivoting method is used to factor A as
 38 *        A = U * D * U**H,  if UPLO = 'U', or
 39 *        A = L * D * L**H,  if UPLO = 'L',
 40 *     where U (or L) is a product of permutation and unit upper (lower)
 41 *     triangular matrices and D is Hermitian and block diagonal with
 42 *     1-by-1 and 2-by-2 diagonal blocks.
 43 *
 44 *  2. If some D(i,i)=0, so that D is exactly singular, then the routine
 45 *     returns with INFO = i. Otherwise, the factored form of A is used
 46 *     to estimate the condition number of the matrix A.  If the
 47 *     reciprocal of the condition number is less than machine precision,
 48 *     INFO = N+1 is returned as a warning, but the routine still goes on
 49 *     to solve for X and compute error bounds as described below.
 50 *
 51 *  3. The system of equations is solved for X using the factored form
 52 *     of A.
 53 *
 54 *  4. Iterative refinement is applied to improve the computed solution
 55 *     matrix and calculate error bounds and backward error estimates
 56 *     for it.
 57 *
 58 *  Arguments
 59 *  =========
 60 *
 61 *  FACT    (input) CHARACTER*1
 62 *          Specifies whether or not the factored form of A has been
 63 *          supplied on entry.
 64 *          = 'F':  On entry, AFP and IPIV contain the factored form of
 65 *                  A.  AFP and IPIV will not be modified.
 66 *          = 'N':  The matrix A will be copied to AFP and factored.
 67 *
 68 *  UPLO    (input) CHARACTER*1
 69 *          = 'U':  Upper triangle of A is stored;
 70 *          = 'L':  Lower triangle of A is stored.
 71 *
 72 *  N       (input) INTEGER
 73 *          The number of linear equations, i.e., the order of the
 74 *          matrix A.  N >= 0.
 75 *
 76 *  NRHS    (input) INTEGER
 77 *          The number of right hand sides, i.e., the number of columns
 78 *          of the matrices B and X.  NRHS >= 0.
 79 *
 80 *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 81 *          The upper or lower triangle of the Hermitian matrix A, packed
 82 *          columnwise in a linear array.  The j-th column of A is stored
 83 *          in the array AP as follows:
 84 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 85 *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 86 *          See below for further details.
 87 *
 88 *  AFP     (input or output) COMPLEX*16 array, dimension (N*(N+1)/2)
 89 *          If FACT = 'F', then AFP is an input argument and on entry
 90 *          contains the block diagonal matrix D and the multipliers used
 91 *          to obtain the factor U or L from the factorization
 92 *          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
 93 *          a packed triangular matrix in the same storage format as A.
 94 *
 95 *          If FACT = 'N', then AFP is an output argument and on exit
 96 *          contains the block diagonal matrix D and the multipliers used
 97 *          to obtain the factor U or L from the factorization
 98 *          A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
 99 *          a packed triangular matrix in the same storage format as A.
100 *
101 *  IPIV    (input or output) INTEGER array, dimension (N)
102 *          If FACT = 'F', then IPIV is an input argument and on entry
103 *          contains details of the interchanges and the block structure
104 *          of D, as determined by ZHPTRF.
105 *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
106 *          interchanged and D(k,k) is a 1-by-1 diagonal block.
107 *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
108 *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
109 *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
110 *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
111 *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
112 *
113 *          If FACT = 'N', then IPIV is an output argument and on exit
114 *          contains details of the interchanges and the block structure
115 *          of D, as determined by ZHPTRF.
116 *
117 *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
118 *          The N-by-NRHS right hand side matrix B.
119 *
120 *  LDB     (input) INTEGER
121 *          The leading dimension of the array B.  LDB >= max(1,N).
122 *
123 *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
124 *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
125 *
126 *  LDX     (input) INTEGER
127 *          The leading dimension of the array X.  LDX >= max(1,N).
128 *
129 *  RCOND   (output) DOUBLE PRECISION
130 *          The estimate of the reciprocal condition number of the matrix
131 *          A.  If RCOND is less than the machine precision (in
132 *          particular, if RCOND = 0), the matrix is singular to working
133 *          precision.  This condition is indicated by a return code of
134 *          INFO > 0.
135 *
136 *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
137 *          The estimated forward error bound for each solution vector
138 *          X(j) (the j-th column of the solution matrix X).
139 *          If XTRUE is the true solution corresponding to X(j), FERR(j)
140 *          is an estimated upper bound for the magnitude of the largest
141 *          element in (X(j) - XTRUE) divided by the magnitude of the
142 *          largest element in X(j).  The estimate is as reliable as
143 *          the estimate for RCOND, and is almost always a slight
144 *          overestimate of the true error.
145 *
146 *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
147 *          The componentwise relative backward error of each solution
148 *          vector X(j) (i.e., the smallest relative change in
149 *          any element of A or B that makes X(j) an exact solution).
150 *
151 *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
152 *
153 *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
154 *
155 *  INFO    (output) INTEGER
156 *          = 0: successful exit
157 *          < 0: if INFO = -i, the i-th argument had an illegal value
158 *          > 0:  if INFO = i, and i is
159 *                <= N:  D(i,i) is exactly zero.  The factorization
160 *                       has been completed but the factor D is exactly
161 *                       singular, so the solution and error bounds could
162 *                       not be computed. RCOND = 0 is returned.
163 *                = N+1: D is nonsingular, but RCOND is less than machine
164 *                       precision, meaning that the matrix is singular
165 *                       to working precision.  Nevertheless, the
166 *                       solution and error bounds are computed because
167 *                       there are a number of situations where the
168 *                       computed solution can be more accurate than the
169 *                       value of RCOND would suggest.
170 *
171 *  Further Details
172 *  ===============
173 *
174 *  The packed storage scheme is illustrated by the following example
175 *  when N = 4, UPLO = 'U':
176 *
177 *  Two-dimensional storage of the Hermitian matrix A:
178 *
179 *     a11 a12 a13 a14
180 *         a22 a23 a24
181 *             a33 a34     (aij = conjg(aji))
182 *                 a44
183 *
184 *  Packed storage of the upper triangle of A:
185 *
186 *  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
187 *
188 *  =====================================================================
189 *
190 *     .. Parameters ..
191       DOUBLE PRECISION   ZERO
192       PARAMETER          ( ZERO = 0.0D+0 )
193 *     ..
194 *     .. Local Scalars ..
195       LOGICAL            NOFACT
196       DOUBLE PRECISION   ANORM
197 *     ..
198 *     .. External Functions ..
199       LOGICAL            LSAME
200       DOUBLE PRECISION   DLAMCH, ZLANHP
201       EXTERNAL           LSAME, DLAMCH, ZLANHP
202 *     ..
203 *     .. External Subroutines ..
204       EXTERNAL           XERBLA, ZCOPY, ZHPCON, ZHPRFS, ZHPTRF, ZHPTRS,
205      $                   ZLACPY
206 *     ..
207 *     .. Intrinsic Functions ..
208       INTRINSIC          MAX
209 *     ..
210 *     .. Executable Statements ..
211 *
212 *     Test the input parameters.
213 *
214       INFO = 0
215       NOFACT = LSAME( FACT, 'N' )
216       IF.NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
217          INFO = -1
218       ELSE IF.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) )
219      $          THEN
220          INFO = -2
221       ELSE IF( N.LT.0 ) THEN
222          INFO = -3
223       ELSE IF( NRHS.LT.0 ) THEN
224          INFO = -4
225       ELSE IF( LDB.LT.MAX1, N ) ) THEN
226          INFO = -9
227       ELSE IF( LDX.LT.MAX1, N ) ) THEN
228          INFO = -11
229       END IF
230       IF( INFO.NE.0 ) THEN
231          CALL XERBLA( 'ZHPSVX'-INFO )
232          RETURN
233       END IF
234 *
235       IF( NOFACT ) THEN
236 *
237 *        Compute the factorization A = U*D*U**H or A = L*D*L**H.
238 *
239          CALL ZCOPY( N*( N+1 ) / 2, AP, 1, AFP, 1 )
240          CALL ZHPTRF( UPLO, N, AFP, IPIV, INFO )
241 *
242 *        Return if INFO is non-zero.
243 *
244          IF( INFO.GT.0 )THEN
245             RCOND = ZERO
246             RETURN
247          END IF
248       END IF
249 *
250 *     Compute the norm of the matrix A.
251 *
252       ANORM = ZLANHP( 'I', UPLO, N, AP, RWORK )
253 *
254 *     Compute the reciprocal of the condition number of A.
255 *
256       CALL ZHPCON( UPLO, N, AFP, IPIV, ANORM, RCOND, WORK, INFO )
257 *
258 *     Compute the solution vectors X.
259 *
260       CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
261       CALL ZHPTRS( UPLO, N, NRHS, AFP, IPIV, X, LDX, INFO )
262 *
263 *     Use iterative refinement to improve the computed solutions and
264 *     compute error bounds and backward error estimates for them.
265 *
266       CALL ZHPRFS( UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
267      $             BERR, WORK, RWORK, INFO )
268 *
269 *     Set INFO = N+1 if the matrix is singular to working precision.
270 *
271       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
272      $   INFO = N + 1
273 *
274       RETURN
275 *
276 *     End of ZHPSVX
277 *
278       END