1       SUBROUTINE ZHPTRF( UPLO, N, AP, IPIV, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       COMPLEX*16         AP( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZHPTRF computes the factorization of a complex Hermitian packed
 21 *  matrix A using the Bunch-Kaufman diagonal pivoting method:
 22 *
 23 *     A = U*D*U**H  or  A = L*D*L**H
 24 *
 25 *  where U (or L) is a product of permutation and unit upper (lower)
 26 *  triangular matrices, and D is Hermitian and block diagonal with
 27 *  1-by-1 and 2-by-2 diagonal blocks.
 28 *
 29 *  Arguments
 30 *  =========
 31 *
 32 *  UPLO    (input) CHARACTER*1
 33 *          = 'U':  Upper triangle of A is stored;
 34 *          = 'L':  Lower triangle of A is stored.
 35 *
 36 *  N       (input) INTEGER
 37 *          The order of the matrix A.  N >= 0.
 38 *
 39 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 40 *          On entry, the upper or lower triangle of the Hermitian matrix
 41 *          A, packed columnwise in a linear array.  The j-th column of A
 42 *          is stored in the array AP as follows:
 43 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 44 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 45 *
 46 *          On exit, the block diagonal matrix D and the multipliers used
 47 *          to obtain the factor U or L, stored as a packed triangular
 48 *          matrix overwriting A (see below for further details).
 49 *
 50 *  IPIV    (output) INTEGER array, dimension (N)
 51 *          Details of the interchanges and the block structure of D.
 52 *          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 53 *          interchanged and D(k,k) is a 1-by-1 diagonal block.
 54 *          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
 55 *          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
 56 *          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
 57 *          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
 58 *          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 59 *
 60 *  INFO    (output) INTEGER
 61 *          = 0: successful exit
 62 *          < 0: if INFO = -i, the i-th argument had an illegal value
 63 *          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
 64 *               has been completed, but the block diagonal matrix D is
 65 *               exactly singular, and division by zero will occur if it
 66 *               is used to solve a system of equations.
 67 *
 68 *  Further Details
 69 *  ===============
 70 *
 71 *  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
 72 *         Company
 73 *
 74 *  If UPLO = 'U', then A = U*D*U**H, where
 75 *     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 76 *  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 77 *  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 78 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 79 *  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 80 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 81 *
 82 *             (   I    v    0   )   k-s
 83 *     U(k) =  (   0    I    0   )   s
 84 *             (   0    0    I   )   n-k
 85 *                k-s   s   n-k
 86 *
 87 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 88 *  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 89 *  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 90 *
 91 *  If UPLO = 'L', then A = L*D*L**H, where
 92 *     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 93 *  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 94 *  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 95 *  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 96 *  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 97 *  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 98 *
 99 *             (   I    0     0   )  k-1
100 *     L(k) =  (   0    I     0   )  s
101 *             (   0    v     I   )  n-k-s+1
102 *                k-1   s  n-k-s+1
103 *
104 *  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
105 *  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
106 *  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
107 *
108 *  =====================================================================
109 *
110 *     .. Parameters ..
111       DOUBLE PRECISION   ZERO, ONE
112       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
113       DOUBLE PRECISION   EIGHT, SEVTEN
114       PARAMETER          ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
115 *     ..
116 *     .. Local Scalars ..
117       LOGICAL            UPPER
118       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
119      $                   KSTEP, KX, NPP
120       DOUBLE PRECISION   ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, ROWMAX,
121      $                   TT
122       COMPLEX*16         D12, D21, T, WK, WKM1, WKP1, ZDUM
123 *     ..
124 *     .. External Functions ..
125       LOGICAL            LSAME
126       INTEGER            IZAMAX
127       DOUBLE PRECISION   DLAPY2
128       EXTERNAL           LSAME, IZAMAX, DLAPY2
129 *     ..
130 *     .. External Subroutines ..
131       EXTERNAL           XERBLA, ZDSCAL, ZHPR, ZSWAP
132 *     ..
133 *     .. Intrinsic Functions ..
134       INTRINSIC          ABSDBLEDCMPLXDCONJGDIMAGMAXSQRT
135 *     ..
136 *     .. Statement Functions ..
137       DOUBLE PRECISION   CABS1
138 *     ..
139 *     .. Statement Function definitions ..
140       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
141 *     ..
142 *     .. Executable Statements ..
143 *
144 *     Test the input parameters.
145 *
146       INFO = 0
147       UPPER = LSAME( UPLO, 'U' )
148       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
149          INFO = -1
150       ELSE IF( N.LT.0 ) THEN
151          INFO = -2
152       END IF
153       IF( INFO.NE.0 ) THEN
154          CALL XERBLA( 'ZHPTRF'-INFO )
155          RETURN
156       END IF
157 *
158 *     Initialize ALPHA for use in choosing pivot block size.
159 *
160       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
161 *
162       IF( UPPER ) THEN
163 *
164 *        Factorize A as U*D*U**H using the upper triangle of A
165 *
166 *        K is the main loop index, decreasing from N to 1 in steps of
167 *        1 or 2
168 *
169          K = N
170          KC = ( N-1 )*/ 2 + 1
171    10    CONTINUE
172          KNC = KC
173 *
174 *        If K < 1, exit from loop
175 *
176          IF( K.LT.1 )
177      $      GO TO 110
178          KSTEP = 1
179 *
180 *        Determine rows and columns to be interchanged and whether
181 *        a 1-by-1 or 2-by-2 pivot block will be used
182 *
183          ABSAKK = ABSDBLE( AP( KC+K-1 ) ) )
184 *
185 *        IMAX is the row-index of the largest off-diagonal element in
186 *        column K, and COLMAX is its absolute value
187 *
188          IF( K.GT.1 ) THEN
189             IMAX = IZAMAX( K-1, AP( KC ), 1 )
190             COLMAX = CABS1( AP( KC+IMAX-1 ) )
191          ELSE
192             COLMAX = ZERO
193          END IF
194 *
195          IFMAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
196 *
197 *           Column K is zero: set INFO and continue
198 *
199             IF( INFO.EQ.0 )
200      $         INFO = K
201             KP = K
202             AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
203          ELSE
204             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
205 *
206 *              no interchange, use 1-by-1 pivot block
207 *
208                KP = K
209             ELSE
210 *
211 *              JMAX is the column-index of the largest off-diagonal
212 *              element in row IMAX, and ROWMAX is its absolute value
213 *
214                ROWMAX = ZERO
215                JMAX = IMAX
216                KX = IMAX*( IMAX+1 ) / 2 + IMAX
217                DO 20 J = IMAX + 1, K
218                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
219                      ROWMAX = CABS1( AP( KX ) )
220                      JMAX = J
221                   END IF
222                   KX = KX + J
223    20          CONTINUE
224                KPC = ( IMAX-1 )*IMAX / 2 + 1
225                IF( IMAX.GT.1 ) THEN
226                   JMAX = IZAMAX( IMAX-1, AP( KPC ), 1 )
227                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
228                END IF
229 *
230                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
231 *
232 *                 no interchange, use 1-by-1 pivot block
233 *
234                   KP = K
235                ELSE IFABSDBLE( AP( KPC+IMAX-1 ) ) ).GE.ALPHA*
236      $                  ROWMAX ) THEN
237 *
238 *                 interchange rows and columns K and IMAX, use 1-by-1
239 *                 pivot block
240 *
241                   KP = IMAX
242                ELSE
243 *
244 *                 interchange rows and columns K-1 and IMAX, use 2-by-2
245 *                 pivot block
246 *
247                   KP = IMAX
248                   KSTEP = 2
249                END IF
250             END IF
251 *
252             KK = K - KSTEP + 1
253             IF( KSTEP.EQ.2 )
254      $         KNC = KNC - K + 1
255             IF( KP.NE.KK ) THEN
256 *
257 *              Interchange rows and columns KK and KP in the leading
258 *              submatrix A(1:k,1:k)
259 *
260                CALL ZSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
261                KX = KPC + KP - 1
262                DO 30 J = KP + 1, KK - 1
263                   KX = KX + J - 1
264                   T = DCONJG( AP( KNC+J-1 ) )
265                   AP( KNC+J-1 ) = DCONJG( AP( KX ) )
266                   AP( KX ) = T
267    30          CONTINUE
268                AP( KX+KK-1 ) = DCONJG( AP( KX+KK-1 ) )
269                R1 = DBLE( AP( KNC+KK-1 ) )
270                AP( KNC+KK-1 ) = DBLE( AP( KPC+KP-1 ) )
271                AP( KPC+KP-1 ) = R1
272                IF( KSTEP.EQ.2 ) THEN
273                   AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
274                   T = AP( KC+K-2 )
275                   AP( KC+K-2 ) = AP( KC+KP-1 )
276                   AP( KC+KP-1 ) = T
277                END IF
278             ELSE
279                AP( KC+K-1 ) = DBLE( AP( KC+K-1 ) )
280                IF( KSTEP.EQ.2 )
281      $            AP( KC-1 ) = DBLE( AP( KC-1 ) )
282             END IF
283 *
284 *           Update the leading submatrix
285 *
286             IF( KSTEP.EQ.1 ) THEN
287 *
288 *              1-by-1 pivot block D(k): column k now holds
289 *
290 *              W(k) = U(k)*D(k)
291 *
292 *              where U(k) is the k-th column of U
293 *
294 *              Perform a rank-1 update of A(1:k-1,1:k-1) as
295 *
296 *              A := A - U(k)*D(k)*U(k)**H = A - W(k)*1/D(k)*W(k)**H
297 *
298                R1 = ONE / DBLE( AP( KC+K-1 ) )
299                CALL ZHPR( UPLO, K-1-R1, AP( KC ), 1, AP )
300 *
301 *              Store U(k) in column k
302 *
303                CALL ZDSCAL( K-1, R1, AP( KC ), 1 )
304             ELSE
305 *
306 *              2-by-2 pivot block D(k): columns k and k-1 now hold
307 *
308 *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
309 *
310 *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
311 *              of U
312 *
313 *              Perform a rank-2 update of A(1:k-2,1:k-2) as
314 *
315 *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**H
316 *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**H
317 *
318                IF( K.GT.2 ) THEN
319 *
320                   D = DLAPY2( DBLE( AP( K-1+( K-1 )*/ 2 ) ),
321      $                DIMAG( AP( K-1+( K-1 )*/ 2 ) ) )
322                   D22 = DBLE( AP( K-1+( K-2 )*( K-1 ) / 2 ) ) / D
323                   D11 = DBLE( AP( K+( K-1 )*/ 2 ) ) / D
324                   TT = ONE / ( D11*D22-ONE )
325                   D12 = AP( K-1+( K-1 )*/ 2 ) / D
326                   D = TT / D
327 *
328                   DO 50 J = K - 21-1
329                      WKM1 = D*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
330      $                      DCONJG( D12 )*AP( J+( K-1 )*/ 2 ) )
331                      WK = D*( D22*AP( J+( K-1 )*/ 2 )-D12*
332      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
333                      DO 40 I = J, 1-1
334                         AP( I+( J-1 )*/ 2 ) = AP( I+( J-1 )*/ 2 ) -
335      $                     AP( I+( K-1 )*/ 2 )*DCONJG( WK ) -
336      $                     AP( I+( K-2 )*( K-1 ) / 2 )*DCONJG( WKM1 )
337    40                CONTINUE
338                      AP( J+( K-1 )*/ 2 ) = WK
339                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
340                      AP( J+( J-1 )*/ 2 ) = DCMPLXDBLE( AP( J+( J-
341      $                                       1 )*/ 2 ) ), 0.0D+0 )
342    50             CONTINUE
343 *
344                END IF
345 *
346             END IF
347          END IF
348 *
349 *        Store details of the interchanges in IPIV
350 *
351          IF( KSTEP.EQ.1 ) THEN
352             IPIV( K ) = KP
353          ELSE
354             IPIV( K ) = -KP
355             IPIV( K-1 ) = -KP
356          END IF
357 *
358 *        Decrease K and return to the start of the main loop
359 *
360          K = K - KSTEP
361          KC = KNC - K
362          GO TO 10
363 *
364       ELSE
365 *
366 *        Factorize A as L*D*L**H using the lower triangle of A
367 *
368 *        K is the main loop index, increasing from 1 to N in steps of
369 *        1 or 2
370 *
371          K = 1
372          KC = 1
373          NPP = N*( N+1 ) / 2
374    60    CONTINUE
375          KNC = KC
376 *
377 *        If K > N, exit from loop
378 *
379          IF( K.GT.N )
380      $      GO TO 110
381          KSTEP = 1
382 *
383 *        Determine rows and columns to be interchanged and whether
384 *        a 1-by-1 or 2-by-2 pivot block will be used
385 *
386          ABSAKK = ABSDBLE( AP( KC ) ) )
387 *
388 *        IMAX is the row-index of the largest off-diagonal element in
389 *        column K, and COLMAX is its absolute value
390 *
391          IF( K.LT.N ) THEN
392             IMAX = K + IZAMAX( N-K, AP( KC+1 ), 1 )
393             COLMAX = CABS1( AP( KC+IMAX-K ) )
394          ELSE
395             COLMAX = ZERO
396          END IF
397 *
398          IFMAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
399 *
400 *           Column K is zero: set INFO and continue
401 *
402             IF( INFO.EQ.0 )
403      $         INFO = K
404             KP = K
405             AP( KC ) = DBLE( AP( KC ) )
406          ELSE
407             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
408 *
409 *              no interchange, use 1-by-1 pivot block
410 *
411                KP = K
412             ELSE
413 *
414 *              JMAX is the column-index of the largest off-diagonal
415 *              element in row IMAX, and ROWMAX is its absolute value
416 *
417                ROWMAX = ZERO
418                KX = KC + IMAX - K
419                DO 70 J = K, IMAX - 1
420                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
421                      ROWMAX = CABS1( AP( KX ) )
422                      JMAX = J
423                   END IF
424                   KX = KX + N - J
425    70          CONTINUE
426                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
427                IF( IMAX.LT.N ) THEN
428                   JMAX = IMAX + IZAMAX( N-IMAX, AP( KPC+1 ), 1 )
429                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
430                END IF
431 *
432                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
433 *
434 *                 no interchange, use 1-by-1 pivot block
435 *
436                   KP = K
437                ELSE IFABSDBLE( AP( KPC ) ) ).GE.ALPHA*ROWMAX ) THEN
438 *
439 *                 interchange rows and columns K and IMAX, use 1-by-1
440 *                 pivot block
441 *
442                   KP = IMAX
443                ELSE
444 *
445 *                 interchange rows and columns K+1 and IMAX, use 2-by-2
446 *                 pivot block
447 *
448                   KP = IMAX
449                   KSTEP = 2
450                END IF
451             END IF
452 *
453             KK = K + KSTEP - 1
454             IF( KSTEP.EQ.2 )
455      $         KNC = KNC + N - K + 1
456             IF( KP.NE.KK ) THEN
457 *
458 *              Interchange rows and columns KK and KP in the trailing
459 *              submatrix A(k:n,k:n)
460 *
461                IF( KP.LT.N )
462      $            CALL ZSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
463      $                        1 )
464                KX = KNC + KP - KK
465                DO 80 J = KK + 1, KP - 1
466                   KX = KX + N - J + 1
467                   T = DCONJG( AP( KNC+J-KK ) )
468                   AP( KNC+J-KK ) = DCONJG( AP( KX ) )
469                   AP( KX ) = T
470    80          CONTINUE
471                AP( KNC+KP-KK ) = DCONJG( AP( KNC+KP-KK ) )
472                R1 = DBLE( AP( KNC ) )
473                AP( KNC ) = DBLE( AP( KPC ) )
474                AP( KPC ) = R1
475                IF( KSTEP.EQ.2 ) THEN
476                   AP( KC ) = DBLE( AP( KC ) )
477                   T = AP( KC+1 )
478                   AP( KC+1 ) = AP( KC+KP-K )
479                   AP( KC+KP-K ) = T
480                END IF
481             ELSE
482                AP( KC ) = DBLE( AP( KC ) )
483                IF( KSTEP.EQ.2 )
484      $            AP( KNC ) = DBLE( AP( KNC ) )
485             END IF
486 *
487 *           Update the trailing submatrix
488 *
489             IF( KSTEP.EQ.1 ) THEN
490 *
491 *              1-by-1 pivot block D(k): column k now holds
492 *
493 *              W(k) = L(k)*D(k)
494 *
495 *              where L(k) is the k-th column of L
496 *
497                IF( K.LT.N ) THEN
498 *
499 *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
500 *
501 *                 A := A - L(k)*D(k)*L(k)**H = A - W(k)*(1/D(k))*W(k)**H
502 *
503                   R1 = ONE / DBLE( AP( KC ) )
504                   CALL ZHPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
505      $                       AP( KC+N-K+1 ) )
506 *
507 *                 Store L(k) in column K
508 *
509                   CALL ZDSCAL( N-K, R1, AP( KC+1 ), 1 )
510                END IF
511             ELSE
512 *
513 *              2-by-2 pivot block D(k): columns K and K+1 now hold
514 *
515 *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
516 *
517 *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
518 *              of L
519 *
520                IF( K.LT.N-1 ) THEN
521 *
522 *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
523 *
524 *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**H
525 *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**H
526 *
527 *                 where L(k) and L(k+1) are the k-th and (k+1)-th
528 *                 columns of L
529 *
530                   D = DLAPY2( DBLE( AP( K+1+( K-1 )*2*N-K ) / 2 ) ),
531      $                DIMAG( AP( K+1+( K-1 )*2*N-K ) / 2 ) ) )
532                   D11 = DBLE( AP( K+1+K*2*N-K-1 ) / 2 ) ) / D
533                   D22 = DBLE( AP( K+( K-1 )*2*N-K ) / 2 ) ) / D
534                   TT = ONE / ( D11*D22-ONE )
535                   D21 = AP( K+1+( K-1 )*2*N-K ) / 2 ) / D
536                   D = TT / D
537 *
538                   DO 100 J = K + 2, N
539                      WK = D*( D11*AP( J+( K-1 )*2*N-K ) / 2 )-D21*
540      $                    AP( J+K*2*N-K-1 ) / 2 ) )
541                      WKP1 = D*( D22*AP( J+K*2*N-K-1 ) / 2 )-
542      $                      DCONJG( D21 )*AP( J+( K-1 )*2*N-K ) /
543      $                      2 ) )
544                      DO 90 I = J, N
545                         AP( I+( J-1 )*2*N-J ) / 2 ) = AP( I+( J-1 )*
546      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*2*N-K ) /
547      $                     2 )*DCONJG( WK ) - AP( I+K*2*N-K-1 ) / 2 )*
548      $                     DCONJG( WKP1 )
549    90                CONTINUE
550                      AP( J+( K-1 )*2*N-K ) / 2 ) = WK
551                      AP( J+K*2*N-K-1 ) / 2 ) = WKP1
552                      AP( J+( J-1 )*2*N-J ) / 2 )
553      $                  = DCMPLXDBLE( AP( J+( J-1 )*2*N-J ) / 2 ) ),
554      $                  0.0D+0 )
555   100             CONTINUE
556                END IF
557             END IF
558          END IF
559 *
560 *        Store details of the interchanges in IPIV
561 *
562          IF( KSTEP.EQ.1 ) THEN
563             IPIV( K ) = KP
564          ELSE
565             IPIV( K ) = -KP
566             IPIV( K+1 ) = -KP
567          END IF
568 *
569 *        Increase K and return to the start of the main loop
570 *
571          K = K + KSTEP
572          KC = KNC + N - K + 2
573          GO TO 60
574 *
575       END IF
576 *
577   110 CONTINUE
578       RETURN
579 *
580 *     End of ZHPTRF
581 *
582       END