1       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       COMPLEX*16         AP( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
 21 *  A in packed storage using the factorization A = U*D*U**H or
 22 *  A = L*D*L**H computed by ZHPTRF.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          Specifies whether the details of the factorization are stored
 29 *          as an upper or lower triangular matrix.
 30 *          = 'U':  Upper triangular, form is A = U*D*U**H;
 31 *          = 'L':  Lower triangular, form is A = L*D*L**H.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
 37 *          On entry, the block diagonal matrix D and the multipliers
 38 *          used to obtain the factor U or L as computed by ZHPTRF,
 39 *          stored as a packed triangular matrix.
 40 *
 41 *          On exit, if INFO = 0, the (Hermitian) inverse of the original
 42 *          matrix, stored as a packed triangular matrix. The j-th column
 43 *          of inv(A) is stored in the array AP as follows:
 44 *          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
 45 *          if UPLO = 'L',
 46 *             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
 47 *
 48 *  IPIV    (input) INTEGER array, dimension (N)
 49 *          Details of the interchanges and the block structure of D
 50 *          as determined by ZHPTRF.
 51 *
 52 *  WORK    (workspace) COMPLEX*16 array, dimension (N)
 53 *
 54 *  INFO    (output) INTEGER
 55 *          = 0: successful exit
 56 *          < 0: if INFO = -i, the i-th argument had an illegal value
 57 *          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 58 *               inverse could not be computed.
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       DOUBLE PRECISION   ONE
 64       COMPLEX*16         CONE, ZERO
 65       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+00.0D+0 ),
 66      $                   ZERO = ( 0.0D+00.0D+0 ) )
 67 *     ..
 68 *     .. Local Scalars ..
 69       LOGICAL            UPPER
 70       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
 71       DOUBLE PRECISION   AK, AKP1, D, T
 72       COMPLEX*16         AKKP1, TEMP
 73 *     ..
 74 *     .. External Functions ..
 75       LOGICAL            LSAME
 76       COMPLEX*16         ZDOTC
 77       EXTERNAL           LSAME, ZDOTC
 78 *     ..
 79 *     .. External Subroutines ..
 80       EXTERNAL           XERBLA, ZCOPY, ZHPMV, ZSWAP
 81 *     ..
 82 *     .. Intrinsic Functions ..
 83       INTRINSIC          ABSDBLEDCONJG
 84 *     ..
 85 *     .. Executable Statements ..
 86 *
 87 *     Test the input parameters.
 88 *
 89       INFO = 0
 90       UPPER = LSAME( UPLO, 'U' )
 91       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 92          INFO = -1
 93       ELSE IF( N.LT.0 ) THEN
 94          INFO = -2
 95       END IF
 96       IF( INFO.NE.0 ) THEN
 97          CALL XERBLA( 'ZHPTRI'-INFO )
 98          RETURN
 99       END IF
100 *
101 *     Quick return if possible
102 *
103       IF( N.EQ.0 )
104      $   RETURN
105 *
106 *     Check that the diagonal matrix D is nonsingular.
107 *
108       IF( UPPER ) THEN
109 *
110 *        Upper triangular storage: examine D from bottom to top
111 *
112          KP = N*( N+1 ) / 2
113          DO 10 INFO = N, 1-1
114             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
115      $         RETURN
116             KP = KP - INFO
117    10    CONTINUE
118       ELSE
119 *
120 *        Lower triangular storage: examine D from top to bottom.
121 *
122          KP = 1
123          DO 20 INFO = 1, N
124             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
125      $         RETURN
126             KP = KP + N - INFO + 1
127    20    CONTINUE
128       END IF
129       INFO = 0
130 *
131       IF( UPPER ) THEN
132 *
133 *        Compute inv(A) from the factorization A = U*D*U**H.
134 *
135 *        K is the main loop index, increasing from 1 to N in steps of
136 *        1 or 2, depending on the size of the diagonal blocks.
137 *
138          K = 1
139          KC = 1
140    30    CONTINUE
141 *
142 *        If K > N, exit from loop.
143 *
144          IF( K.GT.N )
145      $      GO TO 50
146 *
147          KCNEXT = KC + K
148          IF( IPIV( K ).GT.0 ) THEN
149 *
150 *           1 x 1 diagonal block
151 *
152 *           Invert the diagonal block.
153 *
154             AP( KC+K-1 ) = ONE / DBLE( AP( KC+K-1 ) )
155 *
156 *           Compute column K of the inverse.
157 *
158             IF( K.GT.1 ) THEN
159                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
160                CALL ZHPMV( UPLO, K-1-CONE, AP, WORK, 1, ZERO,
161      $                     AP( KC ), 1 )
162                AP( KC+K-1 ) = AP( KC+K-1 ) -
163      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
164             END IF
165             KSTEP = 1
166          ELSE
167 *
168 *           2 x 2 diagonal block
169 *
170 *           Invert the diagonal block.
171 *
172             T = ABS( AP( KCNEXT+K-1 ) )
173             AK = DBLE( AP( KC+K-1 ) ) / T
174             AKP1 = DBLE( AP( KCNEXT+K ) ) / T
175             AKKP1 = AP( KCNEXT+K-1 ) / T
176             D = T*( AK*AKP1-ONE )
177             AP( KC+K-1 ) = AKP1 / D
178             AP( KCNEXT+K ) = AK / D
179             AP( KCNEXT+K-1 ) = -AKKP1 / D
180 *
181 *           Compute columns K and K+1 of the inverse.
182 *
183             IF( K.GT.1 ) THEN
184                CALL ZCOPY( K-1, AP( KC ), 1, WORK, 1 )
185                CALL ZHPMV( UPLO, K-1-CONE, AP, WORK, 1, ZERO,
186      $                     AP( KC ), 1 )
187                AP( KC+K-1 ) = AP( KC+K-1 ) -
188      $                        DBLE( ZDOTC( K-1, WORK, 1, AP( KC ), 1 ) )
189                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
190      $                            ZDOTC( K-1, AP( KC ), 1, AP( KCNEXT ),
191      $                            1 )
192                CALL ZCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
193                CALL ZHPMV( UPLO, K-1-CONE, AP, WORK, 1, ZERO,
194      $                     AP( KCNEXT ), 1 )
195                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
196      $                          DBLE( ZDOTC( K-1, WORK, 1, AP( KCNEXT ),
197      $                          1 ) )
198             END IF
199             KSTEP = 2
200             KCNEXT = KCNEXT + K + 1
201          END IF
202 *
203          KP = ABS( IPIV( K ) )
204          IF( KP.NE.K ) THEN
205 *
206 *           Interchange rows and columns K and KP in the leading
207 *           submatrix A(1:k+1,1:k+1)
208 *
209             KPC = ( KP-1 )*KP / 2 + 1
210             CALL ZSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
211             KX = KPC + KP - 1
212             DO 40 J = KP + 1, K - 1
213                KX = KX + J - 1
214                TEMP = DCONJG( AP( KC+J-1 ) )
215                AP( KC+J-1 ) = DCONJG( AP( KX ) )
216                AP( KX ) = TEMP
217    40       CONTINUE
218             AP( KC+KP-1 ) = DCONJG( AP( KC+KP-1 ) )
219             TEMP = AP( KC+K-1 )
220             AP( KC+K-1 ) = AP( KPC+KP-1 )
221             AP( KPC+KP-1 ) = TEMP
222             IF( KSTEP.EQ.2 ) THEN
223                TEMP = AP( KC+K+K-1 )
224                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
225                AP( KC+K+KP-1 ) = TEMP
226             END IF
227          END IF
228 *
229          K = K + KSTEP
230          KC = KCNEXT
231          GO TO 30
232    50    CONTINUE
233 *
234       ELSE
235 *
236 *        Compute inv(A) from the factorization A = L*D*L**H.
237 *
238 *        K is the main loop index, increasing from 1 to N in steps of
239 *        1 or 2, depending on the size of the diagonal blocks.
240 *
241          NPP = N*( N+1 ) / 2
242          K = N
243          KC = NPP
244    60    CONTINUE
245 *
246 *        If K < 1, exit from loop.
247 *
248          IF( K.LT.1 )
249      $      GO TO 80
250 *
251          KCNEXT = KC - ( N-K+2 )
252          IF( IPIV( K ).GT.0 ) THEN
253 *
254 *           1 x 1 diagonal block
255 *
256 *           Invert the diagonal block.
257 *
258             AP( KC ) = ONE / DBLE( AP( KC ) )
259 *
260 *           Compute column K of the inverse.
261 *
262             IF( K.LT.N ) THEN
263                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
264                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+N-K+1 ), WORK, 1,
265      $                     ZERO, AP( KC+1 ), 1 )
266                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
267      $                    AP( KC+1 ), 1 ) )
268             END IF
269             KSTEP = 1
270          ELSE
271 *
272 *           2 x 2 diagonal block
273 *
274 *           Invert the diagonal block.
275 *
276             T = ABS( AP( KCNEXT+1 ) )
277             AK = DBLE( AP( KCNEXT ) ) / T
278             AKP1 = DBLE( AP( KC ) ) / T
279             AKKP1 = AP( KCNEXT+1 ) / T
280             D = T*( AK*AKP1-ONE )
281             AP( KCNEXT ) = AKP1 / D
282             AP( KC ) = AK / D
283             AP( KCNEXT+1 ) = -AKKP1 / D
284 *
285 *           Compute columns K-1 and K of the inverse.
286 *
287             IF( K.LT.N ) THEN
288                CALL ZCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
289                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
290      $                     1, ZERO, AP( KC+1 ), 1 )
291                AP( KC ) = AP( KC ) - DBLE( ZDOTC( N-K, WORK, 1,
292      $                    AP( KC+1 ), 1 ) )
293                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
294      $                          ZDOTC( N-K, AP( KC+1 ), 1,
295      $                          AP( KCNEXT+2 ), 1 )
296                CALL ZCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
297                CALL ZHPMV( UPLO, N-K, -CONE, AP( KC+( N-K+1 ) ), WORK,
298      $                     1, ZERO, AP( KCNEXT+2 ), 1 )
299                AP( KCNEXT ) = AP( KCNEXT ) -
300      $                        DBLE( ZDOTC( N-K, WORK, 1, AP( KCNEXT+2 ),
301      $                        1 ) )
302             END IF
303             KSTEP = 2
304             KCNEXT = KCNEXT - ( N-K+3 )
305          END IF
306 *
307          KP = ABS( IPIV( K ) )
308          IF( KP.NE.K ) THEN
309 *
310 *           Interchange rows and columns K and KP in the trailing
311 *           submatrix A(k-1:n,k-1:n)
312 *
313             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
314             IF( KP.LT.N )
315      $         CALL ZSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
316             KX = KC + KP - K
317             DO 70 J = K + 1, KP - 1
318                KX = KX + N - J + 1
319                TEMP = DCONJG( AP( KC+J-K ) )
320                AP( KC+J-K ) = DCONJG( AP( KX ) )
321                AP( KX ) = TEMP
322    70       CONTINUE
323             AP( KC+KP-K ) = DCONJG( AP( KC+KP-K ) )
324             TEMP = AP( KC )
325             AP( KC ) = AP( KPC )
326             AP( KPC ) = TEMP
327             IF( KSTEP.EQ.2 ) THEN
328                TEMP = AP( KC-N+K-1 )
329                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
330                AP( KC-N+KP-1 ) = TEMP
331             END IF
332          END IF
333 *
334          K = K - KSTEP
335          KC = KCNEXT
336          GO TO 60
337    80    CONTINUE
338       END IF
339 *
340       RETURN
341 *
342 *     End of ZHPTRI
343 *
344       END