1       SUBROUTINE ZHPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, LDB, N, NRHS
 11 *     ..
 12 *     .. Array Arguments ..
 13       INTEGER            IPIV( * )
 14       COMPLEX*16         AP( * ), B( LDB, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZHPTRS solves a system of linear equations A*X = B with a complex
 21 *  Hermitian matrix A stored in packed format using the factorization
 22 *  A = U*D*U**H or A = L*D*L**H computed by ZHPTRF.
 23 *
 24 *  Arguments
 25 *  =========
 26 *
 27 *  UPLO    (input) CHARACTER*1
 28 *          Specifies whether the details of the factorization are stored
 29 *          as an upper or lower triangular matrix.
 30 *          = 'U':  Upper triangular, form is A = U*D*U**H;
 31 *          = 'L':  Lower triangular, form is A = L*D*L**H.
 32 *
 33 *  N       (input) INTEGER
 34 *          The order of the matrix A.  N >= 0.
 35 *
 36 *  NRHS    (input) INTEGER
 37 *          The number of right hand sides, i.e., the number of columns
 38 *          of the matrix B.  NRHS >= 0.
 39 *
 40 *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 41 *          The block diagonal matrix D and the multipliers used to
 42 *          obtain the factor U or L as computed by ZHPTRF, stored as a
 43 *          packed triangular matrix.
 44 *
 45 *  IPIV    (input) INTEGER array, dimension (N)
 46 *          Details of the interchanges and the block structure of D
 47 *          as determined by ZHPTRF.
 48 *
 49 *  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 50 *          On entry, the right hand side matrix B.
 51 *          On exit, the solution matrix X.
 52 *
 53 *  LDB     (input) INTEGER
 54 *          The leading dimension of the array B.  LDB >= max(1,N).
 55 *
 56 *  INFO    (output) INTEGER
 57 *          = 0:  successful exit
 58 *          < 0: if INFO = -i, the i-th argument had an illegal value
 59 *
 60 *  =====================================================================
 61 *
 62 *     .. Parameters ..
 63       COMPLEX*16         ONE
 64       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ) )
 65 *     ..
 66 *     .. Local Scalars ..
 67       LOGICAL            UPPER
 68       INTEGER            J, K, KC, KP
 69       DOUBLE PRECISION   S
 70       COMPLEX*16         AK, AKM1, AKM1K, BK, BKM1, DENOM
 71 *     ..
 72 *     .. External Functions ..
 73       LOGICAL            LSAME
 74       EXTERNAL           LSAME
 75 *     ..
 76 *     .. External Subroutines ..
 77       EXTERNAL           XERBLA, ZDSCAL, ZGEMV, ZGERU, ZLACGV, ZSWAP
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          DBLEDCONJGMAX
 81 *     ..
 82 *     .. Executable Statements ..
 83 *
 84       INFO = 0
 85       UPPER = LSAME( UPLO, 'U' )
 86       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 87          INFO = -1
 88       ELSE IF( N.LT.0 ) THEN
 89          INFO = -2
 90       ELSE IF( NRHS.LT.0 ) THEN
 91          INFO = -3
 92       ELSE IF( LDB.LT.MAX1, N ) ) THEN
 93          INFO = -7
 94       END IF
 95       IF( INFO.NE.0 ) THEN
 96          CALL XERBLA( 'ZHPTRS'-INFO )
 97          RETURN
 98       END IF
 99 *
100 *     Quick return if possible
101 *
102       IF( N.EQ.0 .OR. NRHS.EQ.0 )
103      $   RETURN
104 *
105       IF( UPPER ) THEN
106 *
107 *        Solve A*X = B, where A = U*D*U**H.
108 *
109 *        First solve U*D*X = B, overwriting B with X.
110 *
111 *        K is the main loop index, decreasing from N to 1 in steps of
112 *        1 or 2, depending on the size of the diagonal blocks.
113 *
114          K = N
115          KC = N*( N+1 ) / 2 + 1
116    10    CONTINUE
117 *
118 *        If K < 1, exit from loop.
119 *
120          IF( K.LT.1 )
121      $      GO TO 30
122 *
123          KC = KC - K
124          IF( IPIV( K ).GT.0 ) THEN
125 *
126 *           1 x 1 diagonal block
127 *
128 *           Interchange rows K and IPIV(K).
129 *
130             KP = IPIV( K )
131             IF( KP.NE.K )
132      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
133 *
134 *           Multiply by inv(U(K)), where U(K) is the transformation
135 *           stored in column K of A.
136 *
137             CALL ZGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
138      $                  B( 11 ), LDB )
139 *
140 *           Multiply by the inverse of the diagonal block.
141 *
142             S = DBLE( ONE ) / DBLE( AP( KC+K-1 ) )
143             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
144             K = K - 1
145          ELSE
146 *
147 *           2 x 2 diagonal block
148 *
149 *           Interchange rows K-1 and -IPIV(K).
150 *
151             KP = -IPIV( K )
152             IF( KP.NE.K-1 )
153      $         CALL ZSWAP( NRHS, B( K-11 ), LDB, B( KP, 1 ), LDB )
154 *
155 *           Multiply by inv(U(K)), where U(K) is the transformation
156 *           stored in columns K-1 and K of A.
157 *
158             CALL ZGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
159      $                  B( 11 ), LDB )
160             CALL ZGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
161      $                  B( K-11 ), LDB, B( 11 ), LDB )
162 *
163 *           Multiply by the inverse of the diagonal block.
164 *
165             AKM1K = AP( KC+K-2 )
166             AKM1 = AP( KC-1 ) / AKM1K
167             AK = AP( KC+K-1 ) / DCONJG( AKM1K )
168             DENOM = AKM1*AK - ONE
169             DO 20 J = 1, NRHS
170                BKM1 = B( K-1, J ) / AKM1K
171                BK = B( K, J ) / DCONJG( AKM1K )
172                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
173                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
174    20       CONTINUE
175             KC = KC - K + 1
176             K = K - 2
177          END IF
178 *
179          GO TO 10
180    30    CONTINUE
181 *
182 *        Next solve U**H *X = B, overwriting B with X.
183 *
184 *        K is the main loop index, increasing from 1 to N in steps of
185 *        1 or 2, depending on the size of the diagonal blocks.
186 *
187          K = 1
188          KC = 1
189    40    CONTINUE
190 *
191 *        If K > N, exit from loop.
192 *
193          IF( K.GT.N )
194      $      GO TO 50
195 *
196          IF( IPIV( K ).GT.0 ) THEN
197 *
198 *           1 x 1 diagonal block
199 *
200 *           Multiply by inv(U**H(K)), where U(K) is the transformation
201 *           stored in column K of A.
202 *
203             IF( K.GT.1 ) THEN
204                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
205                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
206      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
207                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
208             END IF
209 *
210 *           Interchange rows K and IPIV(K).
211 *
212             KP = IPIV( K )
213             IF( KP.NE.K )
214      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
215             KC = KC + K
216             K = K + 1
217          ELSE
218 *
219 *           2 x 2 diagonal block
220 *
221 *           Multiply by inv(U**H(K+1)), where U(K+1) is the transformation
222 *           stored in columns K and K+1 of A.
223 *
224             IF( K.GT.1 ) THEN
225                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
226                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
227      $                     LDB, AP( KC ), 1, ONE, B( K, 1 ), LDB )
228                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
229 *
230                CALL ZLACGV( NRHS, B( K+11 ), LDB )
231                CALL ZGEMV( 'Conjugate transpose', K-1, NRHS, -ONE, B,
232      $                     LDB, AP( KC+K ), 1, ONE, B( K+11 ), LDB )
233                CALL ZLACGV( NRHS, B( K+11 ), LDB )
234             END IF
235 *
236 *           Interchange rows K and -IPIV(K).
237 *
238             KP = -IPIV( K )
239             IF( KP.NE.K )
240      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
241             KC = KC + 2*+ 1
242             K = K + 2
243          END IF
244 *
245          GO TO 40
246    50    CONTINUE
247 *
248       ELSE
249 *
250 *        Solve A*X = B, where A = L*D*L**H.
251 *
252 *        First solve L*D*X = B, overwriting B with X.
253 *
254 *        K is the main loop index, increasing from 1 to N in steps of
255 *        1 or 2, depending on the size of the diagonal blocks.
256 *
257          K = 1
258          KC = 1
259    60    CONTINUE
260 *
261 *        If K > N, exit from loop.
262 *
263          IF( K.GT.N )
264      $      GO TO 80
265 *
266          IF( IPIV( K ).GT.0 ) THEN
267 *
268 *           1 x 1 diagonal block
269 *
270 *           Interchange rows K and IPIV(K).
271 *
272             KP = IPIV( K )
273             IF( KP.NE.K )
274      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
275 *
276 *           Multiply by inv(L(K)), where L(K) is the transformation
277 *           stored in column K of A.
278 *
279             IF( K.LT.N )
280      $         CALL ZGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
281      $                     LDB, B( K+11 ), LDB )
282 *
283 *           Multiply by the inverse of the diagonal block.
284 *
285             S = DBLE( ONE ) / DBLE( AP( KC ) )
286             CALL ZDSCAL( NRHS, S, B( K, 1 ), LDB )
287             KC = KC + N - K + 1
288             K = K + 1
289          ELSE
290 *
291 *           2 x 2 diagonal block
292 *
293 *           Interchange rows K+1 and -IPIV(K).
294 *
295             KP = -IPIV( K )
296             IF( KP.NE.K+1 )
297      $         CALL ZSWAP( NRHS, B( K+11 ), LDB, B( KP, 1 ), LDB )
298 *
299 *           Multiply by inv(L(K)), where L(K) is the transformation
300 *           stored in columns K and K+1 of A.
301 *
302             IF( K.LT.N-1 ) THEN
303                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
304      $                     LDB, B( K+21 ), LDB )
305                CALL ZGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
306      $                     B( K+11 ), LDB, B( K+21 ), LDB )
307             END IF
308 *
309 *           Multiply by the inverse of the diagonal block.
310 *
311             AKM1K = AP( KC+1 )
312             AKM1 = AP( KC ) / DCONJG( AKM1K )
313             AK = AP( KC+N-K+1 ) / AKM1K
314             DENOM = AKM1*AK - ONE
315             DO 70 J = 1, NRHS
316                BKM1 = B( K, J ) / DCONJG( AKM1K )
317                BK = B( K+1, J ) / AKM1K
318                B( K, J ) = ( AK*BKM1-BK ) / DENOM
319                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
320    70       CONTINUE
321             KC = KC + 2*( N-K ) + 1
322             K = K + 2
323          END IF
324 *
325          GO TO 60
326    80    CONTINUE
327 *
328 *        Next solve L**H *X = B, overwriting B with X.
329 *
330 *        K is the main loop index, decreasing from N to 1 in steps of
331 *        1 or 2, depending on the size of the diagonal blocks.
332 *
333          K = N
334          KC = N*( N+1 ) / 2 + 1
335    90    CONTINUE
336 *
337 *        If K < 1, exit from loop.
338 *
339          IF( K.LT.1 )
340      $      GO TO 100
341 *
342          KC = KC - ( N-K+1 )
343          IF( IPIV( K ).GT.0 ) THEN
344 *
345 *           1 x 1 diagonal block
346 *
347 *           Multiply by inv(L**H(K)), where L(K) is the transformation
348 *           stored in column K of A.
349 *
350             IF( K.LT.N ) THEN
351                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
352                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
353      $                     B( K+11 ), LDB, AP( KC+1 ), 1, ONE,
354      $                     B( K, 1 ), LDB )
355                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
356             END IF
357 *
358 *           Interchange rows K and IPIV(K).
359 *
360             KP = IPIV( K )
361             IF( KP.NE.K )
362      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
363             K = K - 1
364          ELSE
365 *
366 *           2 x 2 diagonal block
367 *
368 *           Multiply by inv(L**H(K-1)), where L(K-1) is the transformation
369 *           stored in columns K-1 and K of A.
370 *
371             IF( K.LT.N ) THEN
372                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
373                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
374      $                     B( K+11 ), LDB, AP( KC+1 ), 1, ONE,
375      $                     B( K, 1 ), LDB )
376                CALL ZLACGV( NRHS, B( K, 1 ), LDB )
377 *
378                CALL ZLACGV( NRHS, B( K-11 ), LDB )
379                CALL ZGEMV( 'Conjugate transpose', N-K, NRHS, -ONE,
380      $                     B( K+11 ), LDB, AP( KC-( N-K ) ), 1, ONE,
381      $                     B( K-11 ), LDB )
382                CALL ZLACGV( NRHS, B( K-11 ), LDB )
383             END IF
384 *
385 *           Interchange rows K and -IPIV(K).
386 *
387             KP = -IPIV( K )
388             IF( KP.NE.K )
389      $         CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
390             KC = KC - ( N-K+2 )
391             K = K - 2
392          END IF
393 *
394          GO TO 90
395   100    CONTINUE
396       END IF
397 *
398       RETURN
399 *
400 *     End of ZHPTRS
401 *
402       END