1       DOUBLE PRECISION FUNCTION ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, 
  2      $                                         LDAB, AFB, LDAFB, IPIV,
  3      $                                         C, CAPPLY, INFO, WORK,
  4      $                                         RWORK )
  5 *
  6 *     -- LAPACK routine (version 3.2.1)                               --
  7 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  8 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  9 *     -- April 2009                                                   --
 10 *
 11 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 12 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 13 *
 14       IMPLICIT NONE
 15 *     ..
 16 *     .. Scalar Arguments ..
 17       CHARACTER          TRANS
 18       LOGICAL            CAPPLY
 19       INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
 20 *     ..
 21 *     .. Array Arguments ..
 22       INTEGER            IPIV( * )
 23       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * )
 24       DOUBLE PRECISION   C( * ), RWORK( * )
 25 *
 26 *
 27 *  Purpose
 28 *  =======
 29 *
 30 *     ZLA_GBRCOND_C Computes the infinity norm condition number of
 31 *     op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
 32 *
 33 *  Arguments
 34 *  =========
 35 *
 36 *     TRANS   (input) CHARACTER*1
 37 *     Specifies the form of the system of equations:
 38 *       = 'N':  A * X = B     (No transpose)
 39 *       = 'T':  A**T * X = B  (Transpose)
 40 *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 41 *
 42 *     N       (input) INTEGER
 43 *     The number of linear equations, i.e., the order of the
 44 *     matrix A.  N >= 0.
 45 *
 46 *     KL      (input) INTEGER
 47 *     The number of subdiagonals within the band of A.  KL >= 0.
 48 *
 49 *     KU      (input) INTEGER
 50 *     The number of superdiagonals within the band of A.  KU >= 0.
 51 *
 52 *     AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 53 *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 54 *     The j-th column of A is stored in the j-th column of the
 55 *     array AB as follows:
 56 *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 57 *
 58 *     LDAB    (input) INTEGER
 59 *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
 60 *
 61 *     AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
 62 *     Details of the LU factorization of the band matrix A, as
 63 *     computed by ZGBTRF.  U is stored as an upper triangular
 64 *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
 65 *     and the multipliers used during the factorization are stored
 66 *     in rows KL+KU+2 to 2*KL+KU+1.
 67 *
 68 *     LDAFB   (input) INTEGER
 69 *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
 70 *
 71 *     IPIV    (input) INTEGER array, dimension (N)
 72 *     The pivot indices from the factorization A = P*L*U
 73 *     as computed by ZGBTRF; row i of the matrix was interchanged
 74 *     with row IPIV(i).
 75 *
 76 *     C       (input) DOUBLE PRECISION array, dimension (N)
 77 *     The vector C in the formula op(A) * inv(diag(C)).
 78 *
 79 *     CAPPLY  (input) LOGICAL
 80 *     If .TRUE. then access the vector C in the formula above.
 81 *
 82 *     INFO    (output) INTEGER
 83 *       = 0:  Successful exit.
 84 *     i > 0:  The ith argument is invalid.
 85 *
 86 *     WORK    (input) COMPLEX*16 array, dimension (2*N).
 87 *     Workspace.
 88 *
 89 *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
 90 *     Workspace.
 91 *
 92 *  =====================================================================
 93 *
 94 *     .. Local Scalars ..
 95       LOGICAL            NOTRANS
 96       INTEGER            KASE, I, J
 97       DOUBLE PRECISION   AINVNM, ANORM, TMP
 98       COMPLEX*16         ZDUM
 99 *     ..
100 *     .. Local Arrays ..
101       INTEGER            ISAVE( 3 )
102 *     ..
103 *     .. External Functions ..
104       LOGICAL            LSAME
105       EXTERNAL           LSAME
106 *     ..
107 *     .. External Subroutines ..
108       EXTERNAL           ZLACN2, ZGBTRS, XERBLA
109 *     ..
110 *     .. Intrinsic Functions ..
111       INTRINSIC          ABSMAX
112 *     ..
113 *     .. Statement Functions ..
114       DOUBLE PRECISION   CABS1
115 *     ..
116 *     .. Statement Function Definitions ..
117       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
118 *     ..
119 *     .. Executable Statements ..
120       ZLA_GBRCOND_C = 0.0D+0
121 *
122       INFO = 0
123       NOTRANS = LSAME( TRANS, 'N' )
124       IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
125      $     LSAME( TRANS, 'C' ) ) THEN
126          INFO = -1
127       ELSE IF( N.LT.0 ) THEN
128          INFO = -2
129       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
130          INFO = -3
131       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
132          INFO = -4
133       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
134          INFO = -6
135       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
136          INFO = -8
137       END IF
138       IF( INFO.NE.0 ) THEN
139          CALL XERBLA( 'ZLA_GBRCOND_C'-INFO )
140          RETURN
141       END IF
142 *
143 *     Compute norm of op(A)*op2(C).
144 *
145       ANORM = 0.0D+0
146       KD = KU + 1
147       KE = KL + 1
148       IF ( NOTRANS ) THEN
149          DO I = 1, N
150             TMP = 0.0D+0
151             IF ( CAPPLY ) THEN
152                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
153                   TMP = TMP + CABS1( AB( KD+I-J, J ) ) / C( J )
154                END DO
155             ELSE
156                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
157                   TMP = TMP + CABS1( AB( KD+I-J, J ) )
158                END DO
159             END IF
160             RWORK( I ) = TMP
161             ANORM = MAX( ANORM, TMP )
162          END DO
163       ELSE
164          DO I = 1, N
165             TMP = 0.0D+0
166             IF ( CAPPLY ) THEN
167                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
168                   TMP = TMP + CABS1( AB( KE-I+J, I ) ) / C( J )
169                END DO
170             ELSE
171                DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
172                   TMP = TMP + CABS1( AB( KE-I+J, I ) )
173                END DO
174             END IF
175             RWORK( I ) = TMP
176             ANORM = MAX( ANORM, TMP )
177          END DO
178       END IF
179 *
180 *     Quick return if possible.
181 *
182       IF( N.EQ.0 ) THEN
183          ZLA_GBRCOND_C = 1.0D+0
184          RETURN
185       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
186          RETURN
187       END IF
188 *
189 *     Estimate the norm of inv(op(A)).
190 *
191       AINVNM = 0.0D+0
192 *
193       KASE = 0
194    10 CONTINUE
195       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
196       IF( KASE.NE.0 ) THEN
197          IF( KASE.EQ.2 ) THEN
198 *
199 *           Multiply by R.
200 *
201             DO I = 1, N
202                WORK( I ) = WORK( I ) * RWORK( I )
203             END DO
204 *
205             IF ( NOTRANS ) THEN
206                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
207      $              IPIV, WORK, N, INFO )
208             ELSE
209                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
210      $              LDAFB, IPIV, WORK, N, INFO )
211             ENDIF
212 *
213 *           Multiply by inv(C).
214 *
215             IF ( CAPPLY ) THEN
216                DO I = 1, N
217                   WORK( I ) = WORK( I ) * C( I )
218                END DO
219             END IF
220          ELSE
221 *
222 *           Multiply by inv(C**H).
223 *
224             IF ( CAPPLY ) THEN
225                DO I = 1, N
226                   WORK( I ) = WORK( I ) * C( I )
227                END DO
228             END IF
229 *
230             IF ( NOTRANS ) THEN
231                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
232      $              LDAFB, IPIV,  WORK, N, INFO )
233             ELSE
234                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
235      $              IPIV, WORK, N, INFO )
236             END IF
237 *
238 *           Multiply by R.
239 *
240             DO I = 1, N
241                WORK( I ) = WORK( I ) * RWORK( I )
242             END DO
243          END IF
244          GO TO 10
245       END IF
246 *
247 *     Compute the estimate of the reciprocal condition number.
248 *
249       IF( AINVNM .NE. 0.0D+0 )
250      $   ZLA_GBRCOND_C = 1.0D+0 / AINVNM
251 *
252       RETURN
253 *
254       END