1       DOUBLE PRECISION FUNCTION ZLA_GBRCOND_X( TRANS, N, KL, KU, AB,
  2      $                                         LDAB, AFB, LDAFB, IPIV,
  3      $                                         X, INFO, WORK, RWORK )
  4 *
  5 *     -- LAPACK routine (version 3.2.1)                               --
  6 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  7 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  8 *     -- April 2009                                                   --
  9 *
 10 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 11 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 12 *
 13       IMPLICIT NONE
 14 *     ..
 15 *     .. Scalar Arguments ..
 16       CHARACTER          TRANS
 17       INTEGER            N, KL, KU, KD, KE, LDAB, LDAFB, INFO
 18 *     ..
 19 *     .. Array Arguments ..
 20       INTEGER            IPIV( * )
 21       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
 22      $                   X( * )
 23       DOUBLE PRECISION   RWORK( * )
 24 *
 25 *
 26 *  Purpose
 27 *  =======
 28 *
 29 *     ZLA_GBRCOND_X Computes the infinity norm condition number of
 30 *     op(A) * diag(X) where X is a COMPLEX*16 vector.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *     TRANS   (input) CHARACTER*1
 36 *     Specifies the form of the system of equations:
 37 *       = 'N':  A * X = B     (No transpose)
 38 *       = 'T':  A**T * X = B  (Transpose)
 39 *       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 40 *
 41 *     N       (input) INTEGER
 42 *     The number of linear equations, i.e., the order of the
 43 *     matrix A.  N >= 0.
 44 *
 45 *     KL      (input) INTEGER
 46 *     The number of subdiagonals within the band of A.  KL >= 0.
 47 *
 48 *     KU      (input) INTEGER
 49 *     The number of superdiagonals within the band of A.  KU >= 0.
 50 *
 51 *     AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 52 *     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
 53 *     The j-th column of A is stored in the j-th column of the
 54 *     array AB as follows:
 55 *     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
 56 *
 57 *     LDAB    (input) INTEGER
 58 *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
 59 *
 60 *     AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
 61 *     Details of the LU factorization of the band matrix A, as
 62 *     computed by ZGBTRF.  U is stored as an upper triangular
 63 *     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
 64 *     and the multipliers used during the factorization are stored
 65 *     in rows KL+KU+2 to 2*KL+KU+1.
 66 *
 67 *     LDAFB   (input) INTEGER
 68 *     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
 69 *
 70 *     IPIV    (input) INTEGER array, dimension (N)
 71 *     The pivot indices from the factorization A = P*L*U
 72 *     as computed by ZGBTRF; row i of the matrix was interchanged
 73 *     with row IPIV(i).
 74 *
 75 *     X       (input) COMPLEX*16 array, dimension (N)
 76 *     The vector X in the formula op(A) * diag(X).
 77 *
 78 *     INFO    (output) INTEGER
 79 *       = 0:  Successful exit.
 80 *     i > 0:  The ith argument is invalid.
 81 *
 82 *     WORK    (input) COMPLEX*16 array, dimension (2*N).
 83 *     Workspace.
 84 *
 85 *     RWORK   (input) DOUBLE PRECISION array, dimension (N).
 86 *     Workspace.
 87 *
 88 *  =====================================================================
 89 *
 90 *     .. Local Scalars ..
 91       LOGICAL            NOTRANS
 92       INTEGER            KASE, I, J
 93       DOUBLE PRECISION   AINVNM, ANORM, TMP
 94       COMPLEX*16         ZDUM
 95 *     ..
 96 *     .. Local Arrays ..
 97       INTEGER            ISAVE( 3 )
 98 *     ..
 99 *     .. External Functions ..
100       LOGICAL            LSAME
101       EXTERNAL           LSAME
102 *     ..
103 *     .. External Subroutines ..
104       EXTERNAL           ZLACN2, ZGBTRS, XERBLA
105 *     ..
106 *     .. Intrinsic Functions ..
107       INTRINSIC          ABSMAX
108 *     ..
109 *     .. Statement Functions ..
110       DOUBLE PRECISION   CABS1
111 *     ..
112 *     .. Statement Function Definitions ..
113       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
114 *     ..
115 *     .. Executable Statements ..
116 *
117       ZLA_GBRCOND_X = 0.0D+0
118 *
119       INFO = 0
120       NOTRANS = LSAME( TRANS, 'N' )
121       IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T'.AND. .NOT.
122      $     LSAME( TRANS, 'C' ) ) THEN
123          INFO = -1
124       ELSE IF( N.LT.0 ) THEN
125          INFO = -2
126       ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
127          INFO = -3
128       ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
129          INFO = -4
130       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
131          INFO = -6
132       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
133          INFO = -8
134       END IF
135       IF( INFO.NE.0 ) THEN
136          CALL XERBLA( 'ZLA_GBRCOND_X'-INFO )
137          RETURN
138       END IF
139 *
140 *     Compute norm of op(A)*op2(C).
141 *
142       KD = KU + 1
143       KE = KL + 1
144       ANORM = 0.0D+0
145       IF ( NOTRANS ) THEN
146          DO I = 1, N
147             TMP = 0.0D+0
148             DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
149                TMP = TMP + CABS1( AB( KD+I-J, J) * X( J ) )
150             END DO
151             RWORK( I ) = TMP
152             ANORM = MAX( ANORM, TMP )
153          END DO
154       ELSE
155          DO I = 1, N
156             TMP = 0.0D+0
157             DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
158                TMP = TMP + CABS1( AB( KE-I+J, I ) * X( J ) )
159             END DO
160             RWORK( I ) = TMP
161             ANORM = MAX( ANORM, TMP )
162          END DO
163       END IF
164 *
165 *     Quick return if possible.
166 *
167       IF( N.EQ.0 ) THEN
168          ZLA_GBRCOND_X = 1.0D+0
169          RETURN
170       ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
171          RETURN
172       END IF
173 *
174 *     Estimate the norm of inv(op(A)).
175 *
176       AINVNM = 0.0D+0
177 *
178       KASE = 0
179    10 CONTINUE
180       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
181       IF( KASE.NE.0 ) THEN
182          IF( KASE.EQ.2 ) THEN
183 *
184 *           Multiply by R.
185 *
186             DO I = 1, N
187                WORK( I ) = WORK( I ) * RWORK( I )
188             END DO
189 *
190             IF ( NOTRANS ) THEN
191                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
192      $              IPIV, WORK, N, INFO )
193             ELSE
194                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
195      $              LDAFB, IPIV, WORK, N, INFO )
196             ENDIF
197 *
198 *           Multiply by inv(X).
199 *
200             DO I = 1, N
201                WORK( I ) = WORK( I ) / X( I )
202             END DO
203          ELSE
204 *
205 *           Multiply by inv(X**H).
206 *
207             DO I = 1, N
208                WORK( I ) = WORK( I ) / X( I )
209             END DO
210 *
211             IF ( NOTRANS ) THEN
212                CALL ZGBTRS( 'Conjugate transpose', N, KL, KU, 1, AFB,
213      $              LDAFB, IPIV, WORK, N, INFO )
214             ELSE
215                CALL ZGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
216      $              IPIV, WORK, N, INFO )
217             END IF
218 *
219 *           Multiply by R.
220 *
221             DO I = 1, N
222                WORK( I ) = WORK( I ) * RWORK( I )
223             END DO
224          END IF
225          GO TO 10
226       END IF
227 *
228 *     Compute the estimate of the reciprocal condition number.
229 *
230       IF( AINVNM .NE. 0.0D+0 )
231      $   ZLA_GBRCOND_X = 1.0D+0 / AINVNM
232 *
233       RETURN
234 *
235       END