1       DOUBLE PRECISION FUNCTION ZLA_HERPVGRW( UPLO, N, INFO, A, LDA, AF,
  2      $                                        LDAF, IPIV, WORK )
  3 *
  4 *     -- LAPACK routine (version 3.2.2)                                 --
  5 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  6 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  7 *     -- June 2010                                                    --
  8 *
  9 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 10 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 11 *
 12       IMPLICIT NONE
 13 *     ..
 14 *     .. Scalar Arguments ..
 15       CHARACTER*1        UPLO
 16       INTEGER            N, INFO, LDA, LDAF
 17 *     ..
 18 *     .. Array Arguments ..
 19       INTEGER            IPIV( * )
 20       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
 21       DOUBLE PRECISION   WORK( * )
 22 *     ..
 23 *
 24 *  Purpose
 25 *  =======
 26 
 27 *  ZLA_HERPVGRW computes the reciprocal pivot growth factor
 28 *  norm(A)/norm(U). The "max absolute element" norm is used. If this is
 29 *  much less than 1, the stability of the LU factorization of the
 30 *  (equilibrated) matrix A could be poor. This also means that the
 31 *  solution X, estimated condition numbers, and error bounds could be
 32 *  unreliable.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *     UPLO    (input) CHARACTER*1
 38 *       = 'U':  Upper triangle of A is stored;
 39 *       = 'L':  Lower triangle of A is stored.
 40 *
 41 *     N       (input) INTEGER
 42 *     The number of linear equations, i.e., the order of the
 43 *     matrix A.  N >= 0.
 44 *
 45 *     INFO    (input) INTEGER
 46 *     The value of INFO returned from ZHETRF, .i.e., the pivot in
 47 *     column INFO is exactly 0.
 48 *
 49 *     NCOLS   (input) INTEGER
 50 *     The number of columns of the matrix A. NCOLS >= 0.
 51 *
 52 *     A       (input) COMPLEX*16 array, dimension (LDA,N)
 53 *     On entry, the N-by-N matrix A.
 54 *
 55 *     LDA     (input) INTEGER
 56 *     The leading dimension of the array A.  LDA >= max(1,N).
 57 *
 58 *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
 59 *     The block diagonal matrix D and the multipliers used to
 60 *     obtain the factor U or L as computed by ZHETRF.
 61 *
 62 *     LDAF    (input) INTEGER
 63 *     The leading dimension of the array AF.  LDAF >= max(1,N).
 64 *
 65 *     IPIV    (input) INTEGER array, dimension (N)
 66 *     Details of the interchanges and the block structure of D
 67 *     as determined by ZHETRF.
 68 *
 69 *     WORK    (input) COMPLEX*16 array, dimension (2*N)
 70 *
 71 *  =====================================================================
 72 *
 73 *     .. Local Scalars ..
 74       INTEGER            NCOLS, I, J, K, KP
 75       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
 76       LOGICAL            UPPER, LSAME
 77       COMPLEX*16         ZDUM
 78 *     ..
 79 *     .. External Functions ..
 80       EXTERNAL           LSAME, ZLASET
 81 *     ..
 82 *     .. Intrinsic Functions ..
 83       INTRINSIC          ABS, REAL, DIMAGMAXMIN
 84 *     ..
 85 *     .. Statement Functions ..
 86       DOUBLE PRECISION   CABS1
 87 *     ..
 88 *     .. Statement Function Definitions ..
 89       CABS1( ZDUM ) = ABSDBLE ( ZDUM ) ) + ABSDIMAG ( ZDUM ) )
 90 *     ..
 91 *     .. Executable Statements ..
 92 *
 93       UPPER = LSAME( 'Upper', UPLO )
 94       IF ( INFO.EQ.0 ) THEN
 95          IF (UPPER) THEN
 96             NCOLS = 1
 97          ELSE
 98             NCOLS = N
 99          END IF
100       ELSE
101          NCOLS = INFO
102       END IF
103 
104       RPVGRW = 1.0D+0
105       DO I = 12*N
106          WORK( I ) = 0.0D+0
107       END DO
108 *
109 *     Find the max magnitude entry of each column of A.  Compute the max
110 *     for all N columns so we can apply the pivot permutation while
111 *     looping below.  Assume a full factorization is the common case.
112 *
113       IF ( UPPER ) THEN
114          DO J = 1, N
115             DO I = 1, J
116                WORK( N+I ) = MAX( CABS1( A( I,J ) ), WORK( N+I ) )
117                WORK( N+J ) = MAX( CABS1( A( I,J ) ), WORK( N+J ) )
118             END DO
119          END DO
120       ELSE
121          DO J = 1, N
122             DO I = J, N
123                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
124                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
125             END DO
126          END DO
127       END IF
128 *
129 *     Now find the max magnitude entry of each column of U or L.  Also
130 *     permute the magnitudes of A above so they're in the same order as
131 *     the factor.
132 *
133 *     The iteration orders and permutations were copied from zsytrs.
134 *     Calls to SSWAP would be severe overkill.
135 *
136       IF ( UPPER ) THEN
137          K = N
138          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
139             IF ( IPIV( K ).GT.0 ) THEN
140 !              1x1 pivot
141                KP = IPIV( K )
142                IF ( KP .NE. K ) THEN
143                   TMP = WORK( N+K )
144                   WORK( N+K ) = WORK( N+KP )
145                   WORK( N+KP ) = TMP
146                END IF
147                DO I = 1, K
148                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
149                END DO
150                K = K - 1
151             ELSE
152 !              2x2 pivot
153                KP = -IPIV( K )
154                TMP = WORK( N+K-1 )
155                WORK( N+K-1 ) = WORK( N+KP )
156                WORK( N+KP ) = TMP
157                DO I = 1, K-1
158                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
159                   WORK( K-1 ) =
160      $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
161                END DO
162                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
163                K = K - 2
164             END IF
165          END DO
166          K = NCOLS
167          DO WHILE ( K .LE. N )
168             IF ( IPIV( K ).GT.0 ) THEN
169                KP = IPIV( K )
170                IF ( KP .NE. K ) THEN
171                   TMP = WORK( N+K )
172                   WORK( N+K ) = WORK( N+KP )
173                   WORK( N+KP ) = TMP
174                END IF
175                K = K + 1
176             ELSE
177                KP = -IPIV( K )
178                TMP = WORK( N+K )
179                WORK( N+K ) = WORK( N+KP )
180                WORK( N+KP ) = TMP
181                K = K + 2
182             END IF
183          END DO
184       ELSE
185          K = 1
186          DO WHILE ( K .LE. NCOLS )
187             IF ( IPIV( K ).GT.0 ) THEN
188 !              1x1 pivot
189                KP = IPIV( K )
190                IF ( KP .NE. K ) THEN
191                   TMP = WORK( N+K )
192                   WORK( N+K ) = WORK( N+KP )
193                   WORK( N+KP ) = TMP
194                END IF
195                DO I = K, N
196                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
197                END DO
198                K = K + 1
199             ELSE
200 !              2x2 pivot
201                KP = -IPIV( K )
202                TMP = WORK( N+K+1 )
203                WORK( N+K+1 ) = WORK( N+KP )
204                WORK( N+KP ) = TMP
205                DO I = K+1, N
206                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
207                   WORK( K+1 ) =
208      $                 MAX( CABS1( AF( I, K+1 ) ) , WORK( K+1 ) )
209                END DO
210                WORK(K) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
211                K = K + 2
212             END IF
213          END DO
214          K = NCOLS
215          DO WHILE ( K .GE. 1 )
216             IF ( IPIV( K ).GT.0 ) THEN
217                KP = IPIV( K )
218                IF ( KP .NE. K ) THEN
219                   TMP = WORK( N+K )
220                   WORK( N+K ) = WORK( N+KP )
221                   WORK( N+KP ) = TMP
222                END IF
223                K = K - 1
224             ELSE
225                KP = -IPIV( K )
226                TMP = WORK( N+K )
227                WORK( N+K ) = WORK( N+KP )
228                WORK( N+KP ) = TMP
229                K = K - 2
230             ENDIF
231          END DO
232       END IF
233 *
234 *     Compute the *inverse* of the max element growth factor.  Dividing
235 *     by zero would imply the largest entry of the factor's column is
236 *     zero.  Than can happen when either the column of A is zero or
237 *     massive pivots made the factor underflow to zero.  Neither counts
238 *     as growth in itself, so simply ignore terms with zero
239 *     denominators.
240 *
241       IF ( UPPER ) THEN
242          DO I = NCOLS, N
243             UMAX = WORK( I )
244             AMAX = WORK( N+I )
245             IF ( UMAX /= 0.0D+0 ) THEN
246                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
247             END IF
248          END DO
249       ELSE
250          DO I = 1, NCOLS
251             UMAX = WORK( I )
252             AMAX = WORK( N+I )
253             IF ( UMAX /= 0.0D+0 ) THEN
254                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
255             END IF
256          END DO
257       END IF
258 
259       ZLA_HERPVGRW = RPVGRW
260       END