1       DOUBLE PRECISION FUNCTION ZLA_SYRPVGRW( UPLO, N, INFO, A, LDA, AF,
  2      $                                        LDAF, IPIV, WORK )
  3 *
  4 *     -- LAPACK routine (version 3.2.2)                                 --
  5 *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
  6 *     -- Jason Riedy of Univ. of California Berkeley.                 --
  7 *     -- June 2010                                                    --
  8 *
  9 *     -- LAPACK is a software package provided by Univ. of Tennessee, --
 10 *     -- Univ. of California Berkeley and NAG Ltd.                    --
 11 *
 12       IMPLICIT NONE
 13 *     ..
 14 *     .. Scalar Arguments ..
 15       CHARACTER*1        UPLO
 16       INTEGER            N, INFO, LDA, LDAF
 17 *     ..
 18 *     .. Array Arguments ..
 19       COMPLEX*16         A( LDA, * ), AF( LDAF, * )
 20       DOUBLE PRECISION   WORK( * )
 21       INTEGER            IPIV( * )
 22 *     ..
 23 *
 24 *  Purpose
 25 *  =======
 26 
 27 *  ZLA_SYRPVGRW computes the reciprocal pivot growth factor
 28 *  norm(A)/norm(U). The "max absolute element" norm is used. If this is
 29 *  much less than 1, the stability of the LU factorization of the
 30 *  (equilibrated) matrix A could be poor. This also means that the
 31 *  solution X, estimated condition numbers, and error bounds could be
 32 *  unreliable.
 33 *
 34 *  Arguments
 35 *  =========
 36 *
 37 *     UPLO    (input) CHARACTER*1
 38 *       = 'U':  Upper triangle of A is stored;
 39 *       = 'L':  Lower triangle of A is stored.
 40 *
 41 *     N       (input) INTEGER
 42 *     The number of linear equations, i.e., the order of the
 43 *     matrix A.  N >= 0.
 44 *
 45 *     INFO    (input) INTEGER
 46 *     The value of INFO returned from ZSYTRF, .i.e., the pivot in
 47 *     column INFO is exactly 0.
 48 *
 49 *     NCOLS   (input) INTEGER
 50 *     The number of columns of the matrix A. NCOLS >= 0.
 51 *
 52 *     A       (input) COMPLEX*16 array, dimension (LDA,N)
 53 *     On entry, the N-by-N matrix A.
 54 *
 55 *     LDA     (input) INTEGER
 56 *     The leading dimension of the array A.  LDA >= max(1,N).
 57 *
 58 *     AF      (input) COMPLEX*16 array, dimension (LDAF,N)
 59 *     The block diagonal matrix D and the multipliers used to
 60 *     obtain the factor U or L as computed by ZSYTRF.
 61 *
 62 *     LDAF    (input) INTEGER
 63 *     The leading dimension of the array AF.  LDAF >= max(1,N).
 64 *
 65 *     IPIV    (input) INTEGER array, dimension (N)
 66 *     Details of the interchanges and the block structure of D
 67 *     as determined by ZSYTRF.
 68 *
 69 *     WORK    (input) COMPLEX*16 array, dimension (2*N)
 70 *
 71 *  =====================================================================
 72 *
 73 *     .. Local Scalars ..
 74       INTEGER            NCOLS, I, J, K, KP
 75       DOUBLE PRECISION   AMAX, UMAX, RPVGRW, TMP
 76       LOGICAL            UPPER
 77       COMPLEX*16         ZDUM
 78 *     ..
 79 *     .. Intrinsic Functions ..
 80       INTRINSIC          ABS, REAL, DIMAGMAXMIN
 81 *     ..
 82 *     .. External Subroutines ..
 83       EXTERNAL           LSAME, ZLASET
 84       LOGICAL            LSAME
 85 *     ..
 86 *     .. Statement Functions ..
 87       DOUBLE PRECISION   CABS1
 88 *     ..
 89 *     .. Statement Function Definitions ..
 90       CABS1( ZDUM ) = ABSDBLE ( ZDUM ) ) + ABSDIMAG ( ZDUM ) )
 91 *     ..
 92 *     .. Executable Statements ..
 93 *
 94       UPPER = LSAME( 'Upper', UPLO )
 95       IF ( INFO.EQ.0 ) THEN
 96          IF ( UPPER ) THEN
 97             NCOLS = 1
 98          ELSE
 99             NCOLS = N
100          END IF
101       ELSE
102          NCOLS = INFO
103       END IF
104 
105       RPVGRW = 1.0D+0
106       DO I = 12*N
107          WORK( I ) = 0.0D+0
108       END DO
109 *
110 *     Find the max magnitude entry of each column of A.  Compute the max
111 *     for all N columns so we can apply the pivot permutation while
112 *     looping below.  Assume a full factorization is the common case.
113 *
114       IF ( UPPER ) THEN
115          DO J = 1, N
116             DO I = 1, J
117                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
118                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
119             END DO
120          END DO
121       ELSE
122          DO J = 1, N
123             DO I = J, N
124                WORK( N+I ) = MAX( CABS1( A( I, J ) ), WORK( N+I ) )
125                WORK( N+J ) = MAX( CABS1( A( I, J ) ), WORK( N+J ) )
126             END DO
127          END DO
128       END IF
129 *
130 *     Now find the max magnitude entry of each column of U or L.  Also
131 *     permute the magnitudes of A above so they're in the same order as
132 *     the factor.
133 *
134 *     The iteration orders and permutations were copied from zsytrs.
135 *     Calls to SSWAP would be severe overkill.
136 *
137       IF ( UPPER ) THEN
138          K = N
139          DO WHILE ( K .LT. NCOLS .AND. K.GT.0 )
140             IF ( IPIV( K ).GT.0 ) THEN
141 !              1x1 pivot
142                KP = IPIV( K )
143                IF ( KP .NE. K ) THEN
144                   TMP = WORK( N+K )
145                   WORK( N+K ) = WORK( N+KP )
146                   WORK( N+KP ) = TMP
147                END IF
148                DO I = 1, K
149                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
150                END DO
151                K = K - 1
152             ELSE
153 !              2x2 pivot
154                KP = -IPIV( K )
155                TMP = WORK( N+K-1 )
156                WORK( N+K-1 ) = WORK( N+KP )
157                WORK( N+KP ) = TMP
158                DO I = 1, K-1
159                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
160                   WORK( K-1 ) =
161      $                 MAX( CABS1( AF( I, K-1 ) ), WORK( K-1 ) )
162                END DO
163                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
164                K = K - 2
165             END IF
166          END DO
167          K = NCOLS
168          DO WHILE ( K .LE. N )
169             IF ( IPIV( K ).GT.0 ) THEN
170                KP = IPIV( K )
171                IF ( KP .NE. K ) THEN
172                   TMP = WORK( N+K )
173                   WORK( N+K ) = WORK( N+KP )
174                   WORK( N+KP ) = TMP
175                END IF
176                K = K + 1
177             ELSE
178                KP = -IPIV( K )
179                TMP = WORK( N+K )
180                WORK( N+K ) = WORK( N+KP )
181                WORK( N+KP ) = TMP
182                K = K + 2
183             END IF
184          END DO
185       ELSE
186          K = 1
187          DO WHILE ( K .LE. NCOLS )
188             IF ( IPIV( K ).GT.0 ) THEN
189 !              1x1 pivot
190                KP = IPIV( K )
191                IF ( KP .NE. K ) THEN
192                   TMP = WORK( N+K )
193                   WORK( N+K ) = WORK( N+KP )
194                   WORK( N+KP ) = TMP
195                END IF
196                DO I = K, N
197                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
198                END DO
199                K = K + 1
200             ELSE
201 !              2x2 pivot
202                KP = -IPIV( K )
203                TMP = WORK( N+K+1 )
204                WORK( N+K+1 ) = WORK( N+KP )
205                WORK( N+KP ) = TMP
206                DO I = K+1, N
207                   WORK( K ) = MAX( CABS1( AF( I, K ) ), WORK( K ) )
208                   WORK( K+1 ) =
209      $                 MAX( CABS1( AF( I, K+1 ) ), WORK( K+1 ) )
210                END DO
211                WORK( K ) = MAX( CABS1( AF( K, K ) ), WORK( K ) )
212                K = K + 2
213             END IF
214          END DO
215          K = NCOLS
216          DO WHILE ( K .GE. 1 )
217             IF ( IPIV( K ).GT.0 ) THEN
218                KP = IPIV( K )
219                IF ( KP .NE. K ) THEN
220                   TMP = WORK( N+K )
221                   WORK( N+K ) = WORK( N+KP )
222                   WORK( N+KP ) = TMP
223                END IF
224                K = K - 1
225             ELSE
226                KP = -IPIV( K )
227                TMP = WORK( N+K )
228                WORK( N+K ) = WORK( N+KP )
229                WORK( N+KP ) = TMP
230                K = K - 2
231             ENDIF
232          END DO
233       END IF
234 *
235 *     Compute the *inverse* of the max element growth factor.  Dividing
236 *     by zero would imply the largest entry of the factor's column is
237 *     zero.  Than can happen when either the column of A is zero or
238 *     massive pivots made the factor underflow to zero.  Neither counts
239 *     as growth in itself, so simply ignore terms with zero
240 *     denominators.
241 *
242       IF ( UPPER ) THEN
243          DO I = NCOLS, N
244             UMAX = WORK( I )
245             AMAX = WORK( N+I )
246             IF ( UMAX /= 0.0D+0 ) THEN
247                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
248             END IF
249          END DO
250       ELSE
251          DO I = 1, NCOLS
252             UMAX = WORK( I )
253             AMAX = WORK( N+I )
254             IF ( UMAX /= 0.0D+0 ) THEN
255                RPVGRW = MIN( AMAX / UMAX, RPVGRW )
256             END IF
257          END DO
258       END IF
259 
260       ZLA_SYRPVGRW = RPVGRW
261       END