1       SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  2      $                   RANK, WORK, RWORK, IWORK, INFO )
  3 *
  4 *  -- LAPACK routine (version 3.3.1) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *  -- April 2011                                                      --
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          UPLO
 11       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
 12       DOUBLE PRECISION   RCOND
 13 *     ..
 14 *     .. Array Arguments ..
 15       INTEGER            IWORK( * )
 16       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
 17       COMPLEX*16         B( LDB, * ), WORK( * )
 18 *     ..
 19 *
 20 *  Purpose
 21 *  =======
 22 *
 23 *  ZLALSD uses the singular value decomposition of A to solve the least
 24 *  squares problem of finding X to minimize the Euclidean norm of each
 25 *  column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
 26 *  are N-by-NRHS. The solution X overwrites B.
 27 *
 28 *  The singular values of A smaller than RCOND times the largest
 29 *  singular value are treated as zero in solving the least squares
 30 *  problem; in this case a minimum norm solution is returned.
 31 *  The actual singular values are returned in D in ascending order.
 32 *
 33 *  This code makes very mild assumptions about floating point
 34 *  arithmetic. It will work on machines with a guard digit in
 35 *  add/subtract, or on those binary machines without guard digits
 36 *  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
 37 *  It could conceivably fail on hexadecimal or decimal machines
 38 *  without guard digits, but we know of none.
 39 *
 40 *  Arguments
 41 *  =========
 42 *
 43 *  UPLO   (input) CHARACTER*1
 44 *         = 'U': D and E define an upper bidiagonal matrix.
 45 *         = 'L': D and E define a  lower bidiagonal matrix.
 46 *
 47 *  SMLSIZ (input) INTEGER
 48 *         The maximum size of the subproblems at the bottom of the
 49 *         computation tree.
 50 *
 51 *  N      (input) INTEGER
 52 *         The dimension of the  bidiagonal matrix.  N >= 0.
 53 *
 54 *  NRHS   (input) INTEGER
 55 *         The number of columns of B. NRHS must be at least 1.
 56 *
 57 *  D      (input/output) DOUBLE PRECISION array, dimension (N)
 58 *         On entry D contains the main diagonal of the bidiagonal
 59 *         matrix. On exit, if INFO = 0, D contains its singular values.
 60 *
 61 *  E      (input/output) DOUBLE PRECISION array, dimension (N-1)
 62 *         Contains the super-diagonal entries of the bidiagonal matrix.
 63 *         On exit, E has been destroyed.
 64 *
 65 *  B      (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
 66 *         On input, B contains the right hand sides of the least
 67 *         squares problem. On output, B contains the solution X.
 68 *
 69 *  LDB    (input) INTEGER
 70 *         The leading dimension of B in the calling subprogram.
 71 *         LDB must be at least max(1,N).
 72 *
 73 *  RCOND  (input) DOUBLE PRECISION
 74 *         The singular values of A less than or equal to RCOND times
 75 *         the largest singular value are treated as zero in solving
 76 *         the least squares problem. If RCOND is negative,
 77 *         machine precision is used instead.
 78 *         For example, if diag(S)*X=B were the least squares problem,
 79 *         where diag(S) is a diagonal matrix of singular values, the
 80 *         solution would be X(i) = B(i) / S(i) if S(i) is greater than
 81 *         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
 82 *         RCOND*max(S).
 83 *
 84 *  RANK   (output) INTEGER
 85 *         The number of singular values of A greater than RCOND times
 86 *         the largest singular value.
 87 *
 88 *  WORK   (workspace) COMPLEX*16 array, dimension at least
 89 *         (N * NRHS).
 90 *
 91 *  RWORK  (workspace) DOUBLE PRECISION array, dimension at least
 92 *         (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
 93 *         MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ),
 94 *         where
 95 *         NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
 96 *
 97 *  IWORK  (workspace) INTEGER array, dimension at least
 98 *         (3*N*NLVL + 11*N).
 99 *
100 *  INFO   (output) INTEGER
101 *         = 0:  successful exit.
102 *         < 0:  if INFO = -i, the i-th argument had an illegal value.
103 *         > 0:  The algorithm failed to compute a singular value while
104 *               working on the submatrix lying in rows and columns
105 *               INFO/(N+1) through MOD(INFO,N+1).
106 *
107 *  Further Details
108 *  ===============
109 *
110 *  Based on contributions by
111 *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
112 *       California at Berkeley, USA
113 *     Osni Marques, LBNL/NERSC, USA
114 *
115 *  =====================================================================
116 *
117 *     .. Parameters ..
118       DOUBLE PRECISION   ZERO, ONE, TWO
119       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
120       COMPLEX*16         CZERO
121       PARAMETER          ( CZERO = ( 0.0D00.0D0 ) )
122 *     ..
123 *     .. Local Scalars ..
124       INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
125      $                   GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
126      $                   IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
127      $                   JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
128      $                   PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
129      $                   U, VT, Z
130       DOUBLE PRECISION   CS, EPS, ORGNRM, RCND, R, SN, TOL
131 *     ..
132 *     .. External Functions ..
133       INTEGER            IDAMAX
134       DOUBLE PRECISION   DLAMCH, DLANST
135       EXTERNAL           IDAMAX, DLAMCH, DLANST
136 *     ..
137 *     .. External Subroutines ..
138       EXTERNAL           DGEMM, DLARTG, DLASCL, DLASDA, DLASDQ, DLASET,
139      $                   DLASRT, XERBLA, ZCOPY, ZDROT, ZLACPY, ZLALSA,
140      $                   ZLASCL, ZLASET
141 *     ..
142 *     .. Intrinsic Functions ..
143       INTRINSIC          ABSDBLEDCMPLXDIMAGINTLOGSIGN
144 *     ..
145 *     .. Executable Statements ..
146 *
147 *     Test the input parameters.
148 *
149       INFO = 0
150 *
151       IF( N.LT.0 ) THEN
152          INFO = -3
153       ELSE IF( NRHS.LT.1 ) THEN
154          INFO = -4
155       ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
156          INFO = -8
157       END IF
158       IF( INFO.NE.0 ) THEN
159          CALL XERBLA( 'ZLALSD'-INFO )
160          RETURN
161       END IF
162 *
163       EPS = DLAMCH( 'Epsilon' )
164 *
165 *     Set up the tolerance.
166 *
167       IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
168          RCND = EPS
169       ELSE
170          RCND = RCOND
171       END IF
172 *
173       RANK = 0
174 *
175 *     Quick return if possible.
176 *
177       IF( N.EQ.0 ) THEN
178          RETURN
179       ELSE IF( N.EQ.1 ) THEN
180          IF( D( 1 ).EQ.ZERO ) THEN
181             CALL ZLASET( 'A'1, NRHS, CZERO, CZERO, B, LDB )
182          ELSE
183             RANK = 1
184             CALL ZLASCL( 'G'00, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
185             D( 1 ) = ABS( D( 1 ) )
186          END IF
187          RETURN
188       END IF
189 *
190 *     Rotate the matrix if it is lower bidiagonal.
191 *
192       IF( UPLO.EQ.'L' ) THEN
193          DO 10 I = 1, N - 1
194             CALL DLARTG( D( I ), E( I ), CS, SN, R )
195             D( I ) = R
196             E( I ) = SN*D( I+1 )
197             D( I+1 ) = CS*D( I+1 )
198             IF( NRHS.EQ.1 ) THEN
199                CALL ZDROT( 1, B( I, 1 ), 1, B( I+11 ), 1, CS, SN )
200             ELSE
201                RWORK( I*2-1 ) = CS
202                RWORK( I*2 ) = SN
203             END IF
204    10    CONTINUE
205          IF( NRHS.GT.1 ) THEN
206             DO 30 I = 1, NRHS
207                DO 20 J = 1, N - 1
208                   CS = RWORK( J*2-1 )
209                   SN = RWORK( J*2 )
210                   CALL ZDROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
211    20          CONTINUE
212    30       CONTINUE
213          END IF
214       END IF
215 *
216 *     Scale.
217 *
218       NM1 = N - 1
219       ORGNRM = DLANST( 'M', N, D, E )
220       IF( ORGNRM.EQ.ZERO ) THEN
221          CALL ZLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
222          RETURN
223       END IF
224 *
225       CALL DLASCL( 'G'00, ORGNRM, ONE, N, 1, D, N, INFO )
226       CALL DLASCL( 'G'00, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
227 *
228 *     If N is smaller than the minimum divide size SMLSIZ, then solve
229 *     the problem with another solver.
230 *
231       IF( N.LE.SMLSIZ ) THEN
232          IRWU = 1
233          IRWVT = IRWU + N*N
234          IRWWRK = IRWVT + N*N
235          IRWRB = IRWWRK
236          IRWIB = IRWRB + N*NRHS
237          IRWB = IRWIB + N*NRHS
238          CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
239          CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
240          CALL DLASDQ( 'U'0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
241      $                RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
242      $                RWORK( IRWWRK ), INFO )
243          IF( INFO.NE.0 ) THEN
244             RETURN
245          END IF
246 *
247 *        In the real version, B is passed to DLASDQ and multiplied
248 *        internally by Q**H. Here B is complex and that product is
249 *        computed below in two steps (real and imaginary parts).
250 *
251          J = IRWB - 1
252          DO 50 JCOL = 1, NRHS
253             DO 40 JROW = 1, N
254                J = J + 1
255                RWORK( J ) = DBLE( B( JROW, JCOL ) )
256    40       CONTINUE
257    50    CONTINUE
258          CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWU ), N,
259      $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
260          J = IRWB - 1
261          DO 70 JCOL = 1, NRHS
262             DO 60 JROW = 1, N
263                J = J + 1
264                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
265    60       CONTINUE
266    70    CONTINUE
267          CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWU ), N,
268      $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
269          JREAL = IRWRB - 1
270          JIMAG = IRWIB - 1
271          DO 90 JCOL = 1, NRHS
272             DO 80 JROW = 1, N
273                JREAL = JREAL + 1
274                JIMAG = JIMAG + 1
275                B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
276      $                           RWORK( JIMAG ) )
277    80       CONTINUE
278    90    CONTINUE
279 *
280          TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
281          DO 100 I = 1, N
282             IF( D( I ).LE.TOL ) THEN
283                CALL ZLASET( 'A'1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
284             ELSE
285                CALL ZLASCL( 'G'00, D( I ), ONE, 1, NRHS, B( I, 1 ),
286      $                      LDB, INFO )
287                RANK = RANK + 1
288             END IF
289   100    CONTINUE
290 *
291 *        Since B is complex, the following call to DGEMM is performed
292 *        in two steps (real and imaginary parts). That is for V * B
293 *        (in the real version of the code V**H is stored in WORK).
294 *
295 *        CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
296 *    $               WORK( NWORK ), N )
297 *
298          J = IRWB - 1
299          DO 120 JCOL = 1, NRHS
300             DO 110 JROW = 1, N
301                J = J + 1
302                RWORK( J ) = DBLE( B( JROW, JCOL ) )
303   110       CONTINUE
304   120    CONTINUE
305          CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
306      $               RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
307          J = IRWB - 1
308          DO 140 JCOL = 1, NRHS
309             DO 130 JROW = 1, N
310                J = J + 1
311                RWORK( J ) = DIMAG( B( JROW, JCOL ) )
312   130       CONTINUE
313   140    CONTINUE
314          CALL DGEMM( 'T''N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
315      $               RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
316          JREAL = IRWRB - 1
317          JIMAG = IRWIB - 1
318          DO 160 JCOL = 1, NRHS
319             DO 150 JROW = 1, N
320                JREAL = JREAL + 1
321                JIMAG = JIMAG + 1
322                B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
323      $                           RWORK( JIMAG ) )
324   150       CONTINUE
325   160    CONTINUE
326 *
327 *        Unscale.
328 *
329          CALL DLASCL( 'G'00, ONE, ORGNRM, N, 1, D, N, INFO )
330          CALL DLASRT( 'D', N, D, INFO )
331          CALL ZLASCL( 'G'00, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
332 *
333          RETURN
334       END IF
335 *
336 *     Book-keeping and setting up some constants.
337 *
338       NLVL = INTLOGDBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
339 *
340       SMLSZP = SMLSIZ + 1
341 *
342       U = 1
343       VT = 1 + SMLSIZ*N
344       DIFL = VT + SMLSZP*N
345       DIFR = DIFL + NLVL*N
346       Z = DIFR + NLVL*N*2
347       C = Z + NLVL*N
348       S = C + N
349       POLES = S + N
350       GIVNUM = POLES + 2*NLVL*N
351       NRWORK = GIVNUM + 2*NLVL*N
352       BX = 1
353 *
354       IRWRB = NRWORK
355       IRWIB = IRWRB + SMLSIZ*NRHS
356       IRWB = IRWIB + SMLSIZ*NRHS
357 *
358       SIZEI = 1 + N
359       K = SIZEI + N
360       GIVPTR = K + N
361       PERM = GIVPTR + N
362       GIVCOL = PERM + NLVL*N
363       IWK = GIVCOL + NLVL*N*2
364 *
365       ST = 1
366       SQRE = 0
367       ICMPQ1 = 1
368       ICMPQ2 = 0
369       NSUB = 0
370 *
371       DO 170 I = 1, N
372          IFABS( D( I ) ).LT.EPS ) THEN
373             D( I ) = SIGN( EPS, D( I ) )
374          END IF
375   170 CONTINUE
376 *
377       DO 240 I = 1, NM1
378          IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
379             NSUB = NSUB + 1
380             IWORK( NSUB ) = ST
381 *
382 *           Subproblem found. First determine its size and then
383 *           apply divide and conquer on it.
384 *
385             IF( I.LT.NM1 ) THEN
386 *
387 *              A subproblem with E(I) small for I < NM1.
388 *
389                NSIZE = I - ST + 1
390                IWORK( SIZEI+NSUB-1 ) = NSIZE
391             ELSE IFABS( E( I ) ).GE.EPS ) THEN
392 *
393 *              A subproblem with E(NM1) not too small but I = NM1.
394 *
395                NSIZE = N - ST + 1
396                IWORK( SIZEI+NSUB-1 ) = NSIZE
397             ELSE
398 *
399 *              A subproblem with E(NM1) small. This implies an
400 *              1-by-1 subproblem at D(N), which is not solved
401 *              explicitly.
402 *
403                NSIZE = I - ST + 1
404                IWORK( SIZEI+NSUB-1 ) = NSIZE
405                NSUB = NSUB + 1
406                IWORK( NSUB ) = N
407                IWORK( SIZEI+NSUB-1 ) = 1
408                CALL ZCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
409             END IF
410             ST1 = ST - 1
411             IF( NSIZE.EQ.1 ) THEN
412 *
413 *              This is a 1-by-1 subproblem and is not solved
414 *              explicitly.
415 *
416                CALL ZCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
417             ELSE IF( NSIZE.LE.SMLSIZ ) THEN
418 *
419 *              This is a small subproblem and is solved by DLASDQ.
420 *
421                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
422      $                      RWORK( VT+ST1 ), N )
423                CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
424      $                      RWORK( U+ST1 ), N )
425                CALL DLASDQ( 'U'0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
426      $                      E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
427      $                      N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
428      $                      INFO )
429                IF( INFO.NE.0 ) THEN
430                   RETURN
431                END IF
432 *
433 *              In the real version, B is passed to DLASDQ and multiplied
434 *              internally by Q**H. Here B is complex and that product is
435 *              computed below in two steps (real and imaginary parts).
436 *
437                J = IRWB - 1
438                DO 190 JCOL = 1, NRHS
439                   DO 180 JROW = ST, ST + NSIZE - 1
440                      J = J + 1
441                      RWORK( J ) = DBLE( B( JROW, JCOL ) )
442   180             CONTINUE
443   190          CONTINUE
444                CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
445      $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
446      $                     ZERO, RWORK( IRWRB ), NSIZE )
447                J = IRWB - 1
448                DO 210 JCOL = 1, NRHS
449                   DO 200 JROW = ST, ST + NSIZE - 1
450                      J = J + 1
451                      RWORK( J ) = DIMAG( B( JROW, JCOL ) )
452   200             CONTINUE
453   210          CONTINUE
454                CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
455      $                     RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
456      $                     ZERO, RWORK( IRWIB ), NSIZE )
457                JREAL = IRWRB - 1
458                JIMAG = IRWIB - 1
459                DO 230 JCOL = 1, NRHS
460                   DO 220 JROW = ST, ST + NSIZE - 1
461                      JREAL = JREAL + 1
462                      JIMAG = JIMAG + 1
463                      B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
464      $                                 RWORK( JIMAG ) )
465   220             CONTINUE
466   230          CONTINUE
467 *
468                CALL ZLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
469      $                      WORK( BX+ST1 ), N )
470             ELSE
471 *
472 *              A large problem. Solve it using divide and conquer.
473 *
474                CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
475      $                      E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
476      $                      IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
477      $                      RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
478      $                      RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
479      $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
480      $                      RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
481      $                      RWORK( S+ST1 ), RWORK( NRWORK ),
482      $                      IWORK( IWK ), INFO )
483                IF( INFO.NE.0 ) THEN
484                   RETURN
485                END IF
486                BXST = BX + ST1
487                CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
488      $                      LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
489      $                      RWORK( VT+ST1 ), IWORK( K+ST1 ),
490      $                      RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
491      $                      RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
492      $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
493      $                      IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
494      $                      RWORK( C+ST1 ), RWORK( S+ST1 ),
495      $                      RWORK( NRWORK ), IWORK( IWK ), INFO )
496                IF( INFO.NE.0 ) THEN
497                   RETURN
498                END IF
499             END IF
500             ST = I + 1
501          END IF
502   240 CONTINUE
503 *
504 *     Apply the singular values and treat the tiny ones as zero.
505 *
506       TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
507 *
508       DO 250 I = 1, N
509 *
510 *        Some of the elements in D can be negative because 1-by-1
511 *        subproblems were not solved explicitly.
512 *
513          IFABS( D( I ) ).LE.TOL ) THEN
514             CALL ZLASET( 'A'1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
515          ELSE
516             RANK = RANK + 1
517             CALL ZLASCL( 'G'00, D( I ), ONE, 1, NRHS,
518      $                   WORK( BX+I-1 ), N, INFO )
519          END IF
520          D( I ) = ABS( D( I ) )
521   250 CONTINUE
522 *
523 *     Now apply back the right singular vectors.
524 *
525       ICMPQ2 = 1
526       DO 320 I = 1, NSUB
527          ST = IWORK( I )
528          ST1 = ST - 1
529          NSIZE = IWORK( SIZEI+I-1 )
530          BXST = BX + ST1
531          IF( NSIZE.EQ.1 ) THEN
532             CALL ZCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
533          ELSE IF( NSIZE.LE.SMLSIZ ) THEN
534 *
535 *           Since B and BX are complex, the following call to DGEMM
536 *           is performed in two steps (real and imaginary parts).
537 *
538 *           CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
539 *    $                  RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
540 *    $                  B( ST, 1 ), LDB )
541 *
542             J = BXST - N - 1
543             JREAL = IRWB - 1
544             DO 270 JCOL = 1, NRHS
545                J = J + N
546                DO 260 JROW = 1, NSIZE
547                   JREAL = JREAL + 1
548                   RWORK( JREAL ) = DBLE( WORK( J+JROW ) )
549   260          CONTINUE
550   270       CONTINUE
551             CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
552      $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
553      $                  RWORK( IRWRB ), NSIZE )
554             J = BXST - N - 1
555             JIMAG = IRWB - 1
556             DO 290 JCOL = 1, NRHS
557                J = J + N
558                DO 280 JROW = 1, NSIZE
559                   JIMAG = JIMAG + 1
560                   RWORK( JIMAG ) = DIMAG( WORK( J+JROW ) )
561   280          CONTINUE
562   290       CONTINUE
563             CALL DGEMM( 'T''N', NSIZE, NRHS, NSIZE, ONE,
564      $                  RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
565      $                  RWORK( IRWIB ), NSIZE )
566             JREAL = IRWRB - 1
567             JIMAG = IRWIB - 1
568             DO 310 JCOL = 1, NRHS
569                DO 300 JROW = ST, ST + NSIZE - 1
570                   JREAL = JREAL + 1
571                   JIMAG = JIMAG + 1
572                   B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
573      $                              RWORK( JIMAG ) )
574   300          CONTINUE
575   310       CONTINUE
576          ELSE
577             CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
578      $                   B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
579      $                   RWORK( VT+ST1 ), IWORK( K+ST1 ),
580      $                   RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
581      $                   RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
582      $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
583      $                   IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
584      $                   RWORK( C+ST1 ), RWORK( S+ST1 ),
585      $                   RWORK( NRWORK ), IWORK( IWK ), INFO )
586             IF( INFO.NE.0 ) THEN
587                RETURN
588             END IF
589          END IF
590   320 CONTINUE
591 *
592 *     Unscale and sort the singular values.
593 *
594       CALL DLASCL( 'G'00, ONE, ORGNRM, N, 1, D, N, INFO )
595       CALL DLASRT( 'D', N, D, INFO )
596       CALL ZLASCL( 'G'00, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
597 *
598       RETURN
599 *
600 *     End of ZLALSD
601 *
602       END