1       DOUBLE PRECISION FUNCTION ZLANGB( NORM, N, KL, KU, AB, LDAB,
  2      $                 WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          NORM
 11       INTEGER            KL, KU, LDAB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   WORK( * )
 15       COMPLEX*16         AB( LDAB, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZLANGB  returns the value of the one norm,  or the Frobenius norm, or
 22 *  the  infinity norm,  or the element of  largest absolute value  of an
 23 *  n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
 24 *
 25 *  Description
 26 *  ===========
 27 *
 28 *  ZLANGB returns the value
 29 *
 30 *     ZLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 31 *              (
 32 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 33 *              (
 34 *              ( normI(A),         NORM = 'I' or 'i'
 35 *              (
 36 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 37 *
 38 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 39 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 40 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 41 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  NORM    (input) CHARACTER*1
 47 *          Specifies the value to be returned in ZLANGB as described
 48 *          above.
 49 *
 50 *  N       (input) INTEGER
 51 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANGB is
 52 *          set to zero.
 53 *
 54 *  KL      (input) INTEGER
 55 *          The number of sub-diagonals of the matrix A.  KL >= 0.
 56 *
 57 *  KU      (input) INTEGER
 58 *          The number of super-diagonals of the matrix A.  KU >= 0.
 59 *
 60 *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 61 *          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
 62 *          column of A is stored in the j-th column of the array AB as
 63 *          follows:
 64 *          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
 65 *
 66 *  LDAB    (input) INTEGER
 67 *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
 68 *
 69 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 70 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 71 *          referenced.
 72 *
 73 * =====================================================================
 74 *
 75 *     .. Parameters ..
 76       DOUBLE PRECISION   ONE, ZERO
 77       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 78 *     ..
 79 *     .. Local Scalars ..
 80       INTEGER            I, J, K, L
 81       DOUBLE PRECISION   SCALESUMVALUE
 82 *     ..
 83 *     .. External Functions ..
 84       LOGICAL            LSAME
 85       EXTERNAL           LSAME
 86 *     ..
 87 *     .. External Subroutines ..
 88       EXTERNAL           ZLASSQ
 89 *     ..
 90 *     .. Intrinsic Functions ..
 91       INTRINSIC          ABSMAXMINSQRT
 92 *     ..
 93 *     .. Executable Statements ..
 94 *
 95       IF( N.EQ.0 ) THEN
 96          VALUE = ZERO
 97       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 98 *
 99 *        Find max(abs(A(i,j))).
100 *
101          VALUE = ZERO
102          DO 20 J = 1, N
103             DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
104                VALUE = MAXVALUEABS( AB( I, J ) ) )
105    10       CONTINUE
106    20    CONTINUE
107       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
108 *
109 *        Find norm1(A).
110 *
111          VALUE = ZERO
112          DO 40 J = 1, N
113             SUM = ZERO
114             DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
115                SUM = SUM + ABS( AB( I, J ) )
116    30       CONTINUE
117             VALUE = MAXVALUESUM )
118    40    CONTINUE
119       ELSE IF( LSAME( NORM, 'I' ) ) THEN
120 *
121 *        Find normI(A).
122 *
123          DO 50 I = 1, N
124             WORK( I ) = ZERO
125    50    CONTINUE
126          DO 70 J = 1, N
127             K = KU + 1 - J
128             DO 60 I = MAX1, J-KU ), MIN( N, J+KL )
129                WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
130    60       CONTINUE
131    70    CONTINUE
132          VALUE = ZERO
133          DO 80 I = 1, N
134             VALUE = MAXVALUE, WORK( I ) )
135    80    CONTINUE
136       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
137 *
138 *        Find normF(A).
139 *
140          SCALE = ZERO
141          SUM = ONE
142          DO 90 J = 1, N
143             L = MAX1, J-KU )
144             K = KU + 1 - J + L
145             CALL ZLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1SCALESUM )
146    90    CONTINUE
147          VALUE = SCALE*SQRTSUM )
148       END IF
149 *
150       ZLANGB = VALUE
151       RETURN
152 *
153 *     End of ZLANGB
154 *
155       END