1       DOUBLE PRECISION FUNCTION ZLANGE( NORM, M, N, A, LDA, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM
 10       INTEGER            LDA, M, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   WORK( * )
 14       COMPLEX*16         A( LDA, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLANGE  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  complex matrix A.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  ZLANGE returns the value
 28 *
 29 *     ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in ZLANGE as described
 47 *          above.
 48 *
 49 *  M       (input) INTEGER
 50 *          The number of rows of the matrix A.  M >= 0.  When M = 0,
 51 *          ZLANGE is set to zero.
 52 *
 53 *  N       (input) INTEGER
 54 *          The number of columns of the matrix A.  N >= 0.  When N = 0,
 55 *          ZLANGE is set to zero.
 56 *
 57 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 58 *          The m by n matrix A.
 59 *
 60 *  LDA     (input) INTEGER
 61 *          The leading dimension of the array A.  LDA >= max(M,1).
 62 *
 63 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 64 *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
 65 *          referenced.
 66 *
 67 * =====================================================================
 68 *
 69 *     .. Parameters ..
 70       DOUBLE PRECISION   ONE, ZERO
 71       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 72 *     ..
 73 *     .. Local Scalars ..
 74       INTEGER            I, J
 75       DOUBLE PRECISION   SCALESUMVALUE
 76 *     ..
 77 *     .. External Functions ..
 78       LOGICAL            LSAME
 79       EXTERNAL           LSAME
 80 *     ..
 81 *     .. External Subroutines ..
 82       EXTERNAL           ZLASSQ
 83 *     ..
 84 *     .. Intrinsic Functions ..
 85       INTRINSIC          ABSMAXMINSQRT
 86 *     ..
 87 *     .. Executable Statements ..
 88 *
 89       IFMIN( M, N ).EQ.0 ) THEN
 90          VALUE = ZERO
 91       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 92 *
 93 *        Find max(abs(A(i,j))).
 94 *
 95          VALUE = ZERO
 96          DO 20 J = 1, N
 97             DO 10 I = 1, M
 98                VALUE = MAXVALUEABS( A( I, J ) ) )
 99    10       CONTINUE
100    20    CONTINUE
101       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
102 *
103 *        Find norm1(A).
104 *
105          VALUE = ZERO
106          DO 40 J = 1, N
107             SUM = ZERO
108             DO 30 I = 1, M
109                SUM = SUM + ABS( A( I, J ) )
110    30       CONTINUE
111             VALUE = MAXVALUESUM )
112    40    CONTINUE
113       ELSE IF( LSAME( NORM, 'I' ) ) THEN
114 *
115 *        Find normI(A).
116 *
117          DO 50 I = 1, M
118             WORK( I ) = ZERO
119    50    CONTINUE
120          DO 70 J = 1, N
121             DO 60 I = 1, M
122                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
123    60       CONTINUE
124    70    CONTINUE
125          VALUE = ZERO
126          DO 80 I = 1, M
127             VALUE = MAXVALUE, WORK( I ) )
128    80    CONTINUE
129       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
130 *
131 *        Find normF(A).
132 *
133          SCALE = ZERO
134          SUM = ONE
135          DO 90 J = 1, N
136             CALL ZLASSQ( M, A( 1, J ), 1SCALESUM )
137    90    CONTINUE
138          VALUE = SCALE*SQRTSUM )
139       END IF
140 *
141       ZLANGE = VALUE
142       RETURN
143 *
144 *     End of ZLANGE
145 *
146       END