1       DOUBLE PRECISION FUNCTION ZLANHB( NORM, UPLO, N, K, AB, LDAB,
  2      $                 WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          NORM, UPLO
 11       INTEGER            K, LDAB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   WORK( * )
 15       COMPLEX*16         AB( LDAB, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZLANHB  returns the value of the one norm,  or the Frobenius norm, or
 22 *  the  infinity norm,  or the element of  largest absolute value  of an
 23 *  n by n hermitian band matrix A,  with k super-diagonals.
 24 *
 25 *  Description
 26 *  ===========
 27 *
 28 *  ZLANHB returns the value
 29 *
 30 *     ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 31 *              (
 32 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 33 *              (
 34 *              ( normI(A),         NORM = 'I' or 'i'
 35 *              (
 36 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 37 *
 38 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 39 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 40 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 41 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  NORM    (input) CHARACTER*1
 47 *          Specifies the value to be returned in ZLANHB as described
 48 *          above.
 49 *
 50 *  UPLO    (input) CHARACTER*1
 51 *          Specifies whether the upper or lower triangular part of the
 52 *          band matrix A is supplied.
 53 *          = 'U':  Upper triangular
 54 *          = 'L':  Lower triangular
 55 *
 56 *  N       (input) INTEGER
 57 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is
 58 *          set to zero.
 59 *
 60 *  K       (input) INTEGER
 61 *          The number of super-diagonals or sub-diagonals of the
 62 *          band matrix A.  K >= 0.
 63 *
 64 *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 65 *          The upper or lower triangle of the hermitian band matrix A,
 66 *          stored in the first K+1 rows of AB.  The j-th column of A is
 67 *          stored in the j-th column of the array AB as follows:
 68 *          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 69 *          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 70 *          Note that the imaginary parts of the diagonal elements need
 71 *          not be set and are assumed to be zero.
 72 *
 73 *  LDAB    (input) INTEGER
 74 *          The leading dimension of the array AB.  LDAB >= K+1.
 75 *
 76 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 77 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 78 *          WORK is not referenced.
 79 *
 80 * =====================================================================
 81 *
 82 *     .. Parameters ..
 83       DOUBLE PRECISION   ONE, ZERO
 84       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 85 *     ..
 86 *     .. Local Scalars ..
 87       INTEGER            I, J, L
 88       DOUBLE PRECISION   ABSA, SCALESUMVALUE
 89 *     ..
 90 *     .. External Functions ..
 91       LOGICAL            LSAME
 92       EXTERNAL           LSAME
 93 *     ..
 94 *     .. External Subroutines ..
 95       EXTERNAL           ZLASSQ
 96 *     ..
 97 *     .. Intrinsic Functions ..
 98       INTRINSIC          ABSDBLEMAXMINSQRT
 99 *     ..
100 *     .. Executable Statements ..
101 *
102       IF( N.EQ.0 ) THEN
103          VALUE = ZERO
104       ELSE IF( LSAME( NORM, 'M' ) ) THEN
105 *
106 *        Find max(abs(A(i,j))).
107 *
108          VALUE = ZERO
109          IF( LSAME( UPLO, 'U' ) ) THEN
110             DO 20 J = 1, N
111                DO 10 I = MAX( K+2-J, 1 ), K
112                   VALUE = MAXVALUEABS( AB( I, J ) ) )
113    10          CONTINUE
114                VALUE = MAXVALUEABSDBLE( AB( K+1, J ) ) ) )
115    20       CONTINUE
116          ELSE
117             DO 40 J = 1, N
118                VALUE = MAXVALUEABSDBLE( AB( 1, J ) ) ) )
119                DO 30 I = 2MIN( N+1-J, K+1 )
120                   VALUE = MAXVALUEABS( AB( I, J ) ) )
121    30          CONTINUE
122    40       CONTINUE
123          END IF
124       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
125      $         ( NORM.EQ.'1' ) ) THEN
126 *
127 *        Find normI(A) ( = norm1(A), since A is hermitian).
128 *
129          VALUE = ZERO
130          IF( LSAME( UPLO, 'U' ) ) THEN
131             DO 60 J = 1, N
132                SUM = ZERO
133                L = K + 1 - J
134                DO 50 I = MAX1, J-K ), J - 1
135                   ABSA = ABS( AB( L+I, J ) )
136                   SUM = SUM + ABSA
137                   WORK( I ) = WORK( I ) + ABSA
138    50          CONTINUE
139                WORK( J ) = SUM + ABSDBLE( AB( K+1, J ) ) )
140    60       CONTINUE
141             DO 70 I = 1, N
142                VALUE = MAXVALUE, WORK( I ) )
143    70       CONTINUE
144          ELSE
145             DO 80 I = 1, N
146                WORK( I ) = ZERO
147    80       CONTINUE
148             DO 100 J = 1, N
149                SUM = WORK( J ) + ABSDBLE( AB( 1, J ) ) )
150                L = 1 - J
151                DO 90 I = J + 1MIN( N, J+K )
152                   ABSA = ABS( AB( L+I, J ) )
153                   SUM = SUM + ABSA
154                   WORK( I ) = WORK( I ) + ABSA
155    90          CONTINUE
156                VALUE = MAXVALUESUM )
157   100       CONTINUE
158          END IF
159       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
160 *
161 *        Find normF(A).
162 *
163          SCALE = ZERO
164          SUM = ONE
165          IF( K.GT.0 ) THEN
166             IF( LSAME( UPLO, 'U' ) ) THEN
167                DO 110 J = 2, N
168                   CALL ZLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
169      $                         1SCALESUM )
170   110          CONTINUE
171                L = K + 1
172             ELSE
173                DO 120 J = 1, N - 1
174                   CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1SCALE,
175      $                         SUM )
176   120          CONTINUE
177                L = 1
178             END IF
179             SUM = 2*SUM
180          ELSE
181             L = 1
182          END IF
183          DO 130 J = 1, N
184             IFDBLE( AB( L, J ) ).NE.ZERO ) THEN
185                ABSA = ABSDBLE( AB( L, J ) ) )
186                IFSCALE.LT.ABSA ) THEN
187                   SUM = ONE + SUM*SCALE / ABSA )**2
188                   SCALE = ABSA
189                ELSE
190                   SUM = SUM + ( ABSA / SCALE )**2
191                END IF
192             END IF
193   130    CONTINUE
194          VALUE = SCALE*SQRTSUM )
195       END IF
196 *
197       ZLANHB = VALUE
198       RETURN
199 *
200 *     End of ZLANHB
201 *
202       END