1       DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM, UPLO
 10       INTEGER            N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   WORK( * )
 14       COMPLEX*16         AP( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLANHP  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  complex hermitian matrix A,  supplied in packed form.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  ZLANHP returns the value
 28 *
 29 *     ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in ZLANHP as described
 47 *          above.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          Specifies whether the upper or lower triangular part of the
 51 *          hermitian matrix A is supplied.
 52 *          = 'U':  Upper triangular part of A is supplied
 53 *          = 'L':  Lower triangular part of A is supplied
 54 *
 55 *  N       (input) INTEGER
 56 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANHP is
 57 *          set to zero.
 58 *
 59 *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 60 *          The upper or lower triangle of the hermitian matrix A, packed
 61 *          columnwise in a linear array.  The j-th column of A is stored
 62 *          in the array AP as follows:
 63 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 64 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 65 *          Note that the  imaginary parts of the diagonal elements need
 66 *          not be set and are assumed to be zero.
 67 *
 68 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 69 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 70 *          WORK is not referenced.
 71 *
 72 * =====================================================================
 73 *
 74 *     .. Parameters ..
 75       DOUBLE PRECISION   ONE, ZERO
 76       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 77 *     ..
 78 *     .. Local Scalars ..
 79       INTEGER            I, J, K
 80       DOUBLE PRECISION   ABSA, SCALESUMVALUE
 81 *     ..
 82 *     .. External Functions ..
 83       LOGICAL            LSAME
 84       EXTERNAL           LSAME
 85 *     ..
 86 *     .. External Subroutines ..
 87       EXTERNAL           ZLASSQ
 88 *     ..
 89 *     .. Intrinsic Functions ..
 90       INTRINSIC          ABSDBLEMAXSQRT
 91 *     ..
 92 *     .. Executable Statements ..
 93 *
 94       IF( N.EQ.0 ) THEN
 95          VALUE = ZERO
 96       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 97 *
 98 *        Find max(abs(A(i,j))).
 99 *
100          VALUE = ZERO
101          IF( LSAME( UPLO, 'U' ) ) THEN
102             K = 0
103             DO 20 J = 1, N
104                DO 10 I = K + 1, K + J - 1
105                   VALUE = MAXVALUEABS( AP( I ) ) )
106    10          CONTINUE
107                K = K + J
108                VALUE = MAXVALUEABSDBLE( AP( K ) ) ) )
109    20       CONTINUE
110          ELSE
111             K = 1
112             DO 40 J = 1, N
113                VALUE = MAXVALUEABSDBLE( AP( K ) ) ) )
114                DO 30 I = K + 1, K + N - J
115                   VALUE = MAXVALUEABS( AP( I ) ) )
116    30          CONTINUE
117                K = K + N - J + 1
118    40       CONTINUE
119          END IF
120       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
121      $         ( NORM.EQ.'1' ) ) THEN
122 *
123 *        Find normI(A) ( = norm1(A), since A is hermitian).
124 *
125          VALUE = ZERO
126          K = 1
127          IF( LSAME( UPLO, 'U' ) ) THEN
128             DO 60 J = 1, N
129                SUM = ZERO
130                DO 50 I = 1, J - 1
131                   ABSA = ABS( AP( K ) )
132                   SUM = SUM + ABSA
133                   WORK( I ) = WORK( I ) + ABSA
134                   K = K + 1
135    50          CONTINUE
136                WORK( J ) = SUM + ABSDBLE( AP( K ) ) )
137                K = K + 1
138    60       CONTINUE
139             DO 70 I = 1, N
140                VALUE = MAXVALUE, WORK( I ) )
141    70       CONTINUE
142          ELSE
143             DO 80 I = 1, N
144                WORK( I ) = ZERO
145    80       CONTINUE
146             DO 100 J = 1, N
147                SUM = WORK( J ) + ABSDBLE( AP( K ) ) )
148                K = K + 1
149                DO 90 I = J + 1, N
150                   ABSA = ABS( AP( K ) )
151                   SUM = SUM + ABSA
152                   WORK( I ) = WORK( I ) + ABSA
153                   K = K + 1
154    90          CONTINUE
155                VALUE = MAXVALUESUM )
156   100       CONTINUE
157          END IF
158       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
159 *
160 *        Find normF(A).
161 *
162          SCALE = ZERO
163          SUM = ONE
164          K = 2
165          IF( LSAME( UPLO, 'U' ) ) THEN
166             DO 110 J = 2, N
167                CALL ZLASSQ( J-1, AP( K ), 1SCALESUM )
168                K = K + J
169   110       CONTINUE
170          ELSE
171             DO 120 J = 1, N - 1
172                CALL ZLASSQ( N-J, AP( K ), 1SCALESUM )
173                K = K + N - J + 1
174   120       CONTINUE
175          END IF
176          SUM = 2*SUM
177          K = 1
178          DO 130 I = 1, N
179             IFDBLE( AP( K ) ).NE.ZERO ) THEN
180                ABSA = ABSDBLE( AP( K ) ) )
181                IFSCALE.LT.ABSA ) THEN
182                   SUM = ONE + SUM*SCALE / ABSA )**2
183                   SCALE = ABSA
184                ELSE
185                   SUM = SUM + ( ABSA / SCALE )**2
186                END IF
187             END IF
188             IF( LSAME( UPLO, 'U' ) ) THEN
189                K = K + I + 1
190             ELSE
191                K = K + N - I + 1
192             END IF
193   130    CONTINUE
194          VALUE = SCALE*SQRTSUM )
195       END IF
196 *
197       ZLANHP = VALUE
198       RETURN
199 *
200 *     End of ZLANHP
201 *
202       END