1       DOUBLE PRECISION FUNCTION ZLANHS( NORM, N, A, LDA, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM
 10       INTEGER            LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   WORK( * )
 14       COMPLEX*16         A( LDA, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLANHS  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  Hessenberg matrix A.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  ZLANHS returns the value
 28 *
 29 *     ZLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in ZLANHS as described
 47 *          above.
 48 *
 49 *  N       (input) INTEGER
 50 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANHS is
 51 *          set to zero.
 52 *
 53 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 54 *          The n by n upper Hessenberg matrix A; the part of A below the
 55 *          first sub-diagonal is not referenced.
 56 *
 57 *  LDA     (input) INTEGER
 58 *          The leading dimension of the array A.  LDA >= max(N,1).
 59 *
 60 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 61 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 62 *          referenced.
 63 *
 64 * =====================================================================
 65 *
 66 *     .. Parameters ..
 67       DOUBLE PRECISION   ONE, ZERO
 68       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 69 *     ..
 70 *     .. Local Scalars ..
 71       INTEGER            I, J
 72       DOUBLE PRECISION   SCALESUMVALUE
 73 *     ..
 74 *     .. External Functions ..
 75       LOGICAL            LSAME
 76       EXTERNAL           LSAME
 77 *     ..
 78 *     .. External Subroutines ..
 79       EXTERNAL           ZLASSQ
 80 *     ..
 81 *     .. Intrinsic Functions ..
 82       INTRINSIC          ABSMAXMINSQRT
 83 *     ..
 84 *     .. Executable Statements ..
 85 *
 86       IF( N.EQ.0 ) THEN
 87          VALUE = ZERO
 88       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 89 *
 90 *        Find max(abs(A(i,j))).
 91 *
 92          VALUE = ZERO
 93          DO 20 J = 1, N
 94             DO 10 I = 1MIN( N, J+1 )
 95                VALUE = MAXVALUEABS( A( I, J ) ) )
 96    10       CONTINUE
 97    20    CONTINUE
 98       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 99 *
100 *        Find norm1(A).
101 *
102          VALUE = ZERO
103          DO 40 J = 1, N
104             SUM = ZERO
105             DO 30 I = 1MIN( N, J+1 )
106                SUM = SUM + ABS( A( I, J ) )
107    30       CONTINUE
108             VALUE = MAXVALUESUM )
109    40    CONTINUE
110       ELSE IF( LSAME( NORM, 'I' ) ) THEN
111 *
112 *        Find normI(A).
113 *
114          DO 50 I = 1, N
115             WORK( I ) = ZERO
116    50    CONTINUE
117          DO 70 J = 1, N
118             DO 60 I = 1MIN( N, J+1 )
119                WORK( I ) = WORK( I ) + ABS( A( I, J ) )
120    60       CONTINUE
121    70    CONTINUE
122          VALUE = ZERO
123          DO 80 I = 1, N
124             VALUE = MAXVALUE, WORK( I ) )
125    80    CONTINUE
126       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
127 *
128 *        Find normF(A).
129 *
130          SCALE = ZERO
131          SUM = ONE
132          DO 90 J = 1, N
133             CALL ZLASSQ( MIN( N, J+1 ), A( 1, J ), 1SCALESUM )
134    90    CONTINUE
135          VALUE = SCALE*SQRTSUM )
136       END IF
137 *
138       ZLANHS = VALUE
139       RETURN
140 *
141 *     End of ZLANHS
142 *
143       END