1       DOUBLE PRECISION FUNCTION ZLANHT( NORM, N, D, E )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM
 10       INTEGER            N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   D( * )
 14       COMPLEX*16         E( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLANHT  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  complex Hermitian tridiagonal matrix A.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  ZLANHT returns the value
 28 *
 29 *     ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in ZLANHT as described
 47 *          above.
 48 *
 49 *  N       (input) INTEGER
 50 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANHT is
 51 *          set to zero.
 52 *
 53 *  D       (input) DOUBLE PRECISION array, dimension (N)
 54 *          The diagonal elements of A.
 55 *
 56 *  E       (input) COMPLEX*16 array, dimension (N-1)
 57 *          The (n-1) sub-diagonal or super-diagonal elements of A.
 58 *
 59 *  =====================================================================
 60 *
 61 *     .. Parameters ..
 62       DOUBLE PRECISION   ONE, ZERO
 63       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 64 *     ..
 65 *     .. Local Scalars ..
 66       INTEGER            I
 67       DOUBLE PRECISION   ANORM, SCALESUM
 68 *     ..
 69 *     .. External Functions ..
 70       LOGICAL            LSAME
 71       EXTERNAL           LSAME
 72 *     ..
 73 *     .. External Subroutines ..
 74       EXTERNAL           DLASSQ, ZLASSQ
 75 *     ..
 76 *     .. Intrinsic Functions ..
 77       INTRINSIC          ABSMAXSQRT
 78 *     ..
 79 *     .. Executable Statements ..
 80 *
 81       IF( N.LE.0 ) THEN
 82          ANORM = ZERO
 83       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 84 *
 85 *        Find max(abs(A(i,j))).
 86 *
 87          ANORM = ABS( D( N ) )
 88          DO 10 I = 1, N - 1
 89             ANORM = MAX( ANORM, ABS( D( I ) ) )
 90             ANORM = MAX( ANORM, ABS( E( I ) ) )
 91    10    CONTINUE
 92       ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' .OR.
 93      $         LSAME( NORM, 'I' ) ) THEN
 94 *
 95 *        Find norm1(A).
 96 *
 97          IF( N.EQ.1 ) THEN
 98             ANORM = ABS( D( 1 ) )
 99          ELSE
100             ANORM = MAXABS( D( 1 ) )+ABS( E( 1 ) ),
101      $              ABS( E( N-1 ) )+ABS( D( N ) ) )
102             DO 20 I = 2, N - 1
103                ANORM = MAX( ANORM, ABS( D( I ) )+ABS( E( I ) )+
104      $                 ABS( E( I-1 ) ) )
105    20       CONTINUE
106          END IF
107       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
108 *
109 *        Find normF(A).
110 *
111          SCALE = ZERO
112          SUM = ONE
113          IF( N.GT.1 ) THEN
114             CALL ZLASSQ( N-1, E, 1SCALESUM )
115             SUM = 2*SUM
116          END IF
117          CALL DLASSQ( N, D, 1SCALESUM )
118          ANORM = SCALE*SQRTSUM )
119       END IF
120 *
121       ZLANHT = ANORM
122       RETURN
123 *
124 *     End of ZLANHT
125 *
126       END