1       DOUBLE PRECISION FUNCTION ZLANSB( NORM, UPLO, N, K, AB, LDAB,
  2      $                 WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          NORM, UPLO
 11       INTEGER            K, LDAB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   WORK( * )
 15       COMPLEX*16         AB( LDAB, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZLANSB  returns the value of the one norm,  or the Frobenius norm, or
 22 *  the  infinity norm,  or the element of  largest absolute value  of an
 23 *  n by n symmetric band matrix A,  with k super-diagonals.
 24 *
 25 *  Description
 26 *  ===========
 27 *
 28 *  ZLANSB returns the value
 29 *
 30 *     ZLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 31 *              (
 32 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 33 *              (
 34 *              ( normI(A),         NORM = 'I' or 'i'
 35 *              (
 36 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 37 *
 38 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 39 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 40 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 41 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  NORM    (input) CHARACTER*1
 47 *          Specifies the value to be returned in ZLANSB as described
 48 *          above.
 49 *
 50 *  UPLO    (input) CHARACTER*1
 51 *          Specifies whether the upper or lower triangular part of the
 52 *          band matrix A is supplied.
 53 *          = 'U':  Upper triangular part is supplied
 54 *          = 'L':  Lower triangular part is supplied
 55 *
 56 *  N       (input) INTEGER
 57 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANSB is
 58 *          set to zero.
 59 *
 60 *  K       (input) INTEGER
 61 *          The number of super-diagonals or sub-diagonals of the
 62 *          band matrix A.  K >= 0.
 63 *
 64 *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 65 *          The upper or lower triangle of the symmetric band matrix A,
 66 *          stored in the first K+1 rows of AB.  The j-th column of A is
 67 *          stored in the j-th column of the array AB as follows:
 68 *          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 69 *          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 70 *
 71 *  LDAB    (input) INTEGER
 72 *          The leading dimension of the array AB.  LDAB >= K+1.
 73 *
 74 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 75 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 76 *          WORK is not referenced.
 77 *
 78 * =====================================================================
 79 *
 80 *     .. Parameters ..
 81       DOUBLE PRECISION   ONE, ZERO
 82       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 83 *     ..
 84 *     .. Local Scalars ..
 85       INTEGER            I, J, L
 86       DOUBLE PRECISION   ABSA, SCALESUMVALUE
 87 *     ..
 88 *     .. External Functions ..
 89       LOGICAL            LSAME
 90       EXTERNAL           LSAME
 91 *     ..
 92 *     .. External Subroutines ..
 93       EXTERNAL           ZLASSQ
 94 *     ..
 95 *     .. Intrinsic Functions ..
 96       INTRINSIC          ABSMAXMINSQRT
 97 *     ..
 98 *     .. Executable Statements ..
 99 *
100       IF( N.EQ.0 ) THEN
101          VALUE = ZERO
102       ELSE IF( LSAME( NORM, 'M' ) ) THEN
103 *
104 *        Find max(abs(A(i,j))).
105 *
106          VALUE = ZERO
107          IF( LSAME( UPLO, 'U' ) ) THEN
108             DO 20 J = 1, N
109                DO 10 I = MAX( K+2-J, 1 ), K + 1
110                   VALUE = MAXVALUEABS( AB( I, J ) ) )
111    10          CONTINUE
112    20       CONTINUE
113          ELSE
114             DO 40 J = 1, N
115                DO 30 I = 1MIN( N+1-J, K+1 )
116                   VALUE = MAXVALUEABS( AB( I, J ) ) )
117    30          CONTINUE
118    40       CONTINUE
119          END IF
120       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
121      $         ( NORM.EQ.'1' ) ) THEN
122 *
123 *        Find normI(A) ( = norm1(A), since A is symmetric).
124 *
125          VALUE = ZERO
126          IF( LSAME( UPLO, 'U' ) ) THEN
127             DO 60 J = 1, N
128                SUM = ZERO
129                L = K + 1 - J
130                DO 50 I = MAX1, J-K ), J - 1
131                   ABSA = ABS( AB( L+I, J ) )
132                   SUM = SUM + ABSA
133                   WORK( I ) = WORK( I ) + ABSA
134    50          CONTINUE
135                WORK( J ) = SUM + ABS( AB( K+1, J ) )
136    60       CONTINUE
137             DO 70 I = 1, N
138                VALUE = MAXVALUE, WORK( I ) )
139    70       CONTINUE
140          ELSE
141             DO 80 I = 1, N
142                WORK( I ) = ZERO
143    80       CONTINUE
144             DO 100 J = 1, N
145                SUM = WORK( J ) + ABS( AB( 1, J ) )
146                L = 1 - J
147                DO 90 I = J + 1MIN( N, J+K )
148                   ABSA = ABS( AB( L+I, J ) )
149                   SUM = SUM + ABSA
150                   WORK( I ) = WORK( I ) + ABSA
151    90          CONTINUE
152                VALUE = MAXVALUESUM )
153   100       CONTINUE
154          END IF
155       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
156 *
157 *        Find normF(A).
158 *
159          SCALE = ZERO
160          SUM = ONE
161          IF( K.GT.0 ) THEN
162             IF( LSAME( UPLO, 'U' ) ) THEN
163                DO 110 J = 2, N
164                   CALL ZLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
165      $                         1SCALESUM )
166   110          CONTINUE
167                L = K + 1
168             ELSE
169                DO 120 J = 1, N - 1
170                   CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1SCALE,
171      $                         SUM )
172   120          CONTINUE
173                L = 1
174             END IF
175             SUM = 2*SUM
176          ELSE
177             L = 1
178          END IF
179          CALL ZLASSQ( N, AB( L, 1 ), LDAB, SCALESUM )
180          VALUE = SCALE*SQRTSUM )
181       END IF
182 *
183       ZLANSB = VALUE
184       RETURN
185 *
186 *     End of ZLANSB
187 *
188       END