1       DOUBLE PRECISION FUNCTION ZLANSY( NORM, UPLO, N, A, LDA, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          NORM, UPLO
 10       INTEGER            LDA, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   WORK( * )
 14       COMPLEX*16         A( LDA, * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLANSY  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  complex symmetric matrix A.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  ZLANSY returns the value
 28 *
 29 *     ZLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in ZLANSY as described
 47 *          above.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          Specifies whether the upper or lower triangular part of the
 51 *          symmetric matrix A is to be referenced.
 52 *          = 'U':  Upper triangular part of A is referenced
 53 *          = 'L':  Lower triangular part of A is referenced
 54 *
 55 *  N       (input) INTEGER
 56 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANSY is
 57 *          set to zero.
 58 *
 59 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 60 *          The symmetric matrix A.  If UPLO = 'U', the leading n by n
 61 *          upper triangular part of A contains the upper triangular part
 62 *          of the matrix A, and the strictly lower triangular part of A
 63 *          is not referenced.  If UPLO = 'L', the leading n by n lower
 64 *          triangular part of A contains the lower triangular part of
 65 *          the matrix A, and the strictly upper triangular part of A is
 66 *          not referenced.
 67 *
 68 *  LDA     (input) INTEGER
 69 *          The leading dimension of the array A.  LDA >= max(N,1).
 70 *
 71 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 72 *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 73 *          WORK is not referenced.
 74 *
 75 * =====================================================================
 76 *
 77 *     .. Parameters ..
 78       DOUBLE PRECISION   ONE, ZERO
 79       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 80 *     ..
 81 *     .. Local Scalars ..
 82       INTEGER            I, J
 83       DOUBLE PRECISION   ABSA, SCALESUMVALUE
 84 *     ..
 85 *     .. External Functions ..
 86       LOGICAL            LSAME
 87       EXTERNAL           LSAME
 88 *     ..
 89 *     .. External Subroutines ..
 90       EXTERNAL           ZLASSQ
 91 *     ..
 92 *     .. Intrinsic Functions ..
 93       INTRINSIC          ABSMAXSQRT
 94 *     ..
 95 *     .. Executable Statements ..
 96 *
 97       IF( N.EQ.0 ) THEN
 98          VALUE = ZERO
 99       ELSE IF( LSAME( NORM, 'M' ) ) THEN
100 *
101 *        Find max(abs(A(i,j))).
102 *
103          VALUE = ZERO
104          IF( LSAME( UPLO, 'U' ) ) THEN
105             DO 20 J = 1, N
106                DO 10 I = 1, J
107                   VALUE = MAXVALUEABS( A( I, J ) ) )
108    10          CONTINUE
109    20       CONTINUE
110          ELSE
111             DO 40 J = 1, N
112                DO 30 I = J, N
113                   VALUE = MAXVALUEABS( A( I, J ) ) )
114    30          CONTINUE
115    40       CONTINUE
116          END IF
117       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
118      $         ( NORM.EQ.'1' ) ) THEN
119 *
120 *        Find normI(A) ( = norm1(A), since A is symmetric).
121 *
122          VALUE = ZERO
123          IF( LSAME( UPLO, 'U' ) ) THEN
124             DO 60 J = 1, N
125                SUM = ZERO
126                DO 50 I = 1, J - 1
127                   ABSA = ABS( A( I, J ) )
128                   SUM = SUM + ABSA
129                   WORK( I ) = WORK( I ) + ABSA
130    50          CONTINUE
131                WORK( J ) = SUM + ABS( A( J, J ) )
132    60       CONTINUE
133             DO 70 I = 1, N
134                VALUE = MAXVALUE, WORK( I ) )
135    70       CONTINUE
136          ELSE
137             DO 80 I = 1, N
138                WORK( I ) = ZERO
139    80       CONTINUE
140             DO 100 J = 1, N
141                SUM = WORK( J ) + ABS( A( J, J ) )
142                DO 90 I = J + 1, N
143                   ABSA = ABS( A( I, J ) )
144                   SUM = SUM + ABSA
145                   WORK( I ) = WORK( I ) + ABSA
146    90          CONTINUE
147                VALUE = MAXVALUESUM )
148   100       CONTINUE
149          END IF
150       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
151 *
152 *        Find normF(A).
153 *
154          SCALE = ZERO
155          SUM = ONE
156          IF( LSAME( UPLO, 'U' ) ) THEN
157             DO 110 J = 2, N
158                CALL ZLASSQ( J-1, A( 1, J ), 1SCALESUM )
159   110       CONTINUE
160          ELSE
161             DO 120 J = 1, N - 1
162                CALL ZLASSQ( N-J, A( J+1, J ), 1SCALESUM )
163   120       CONTINUE
164          END IF
165          SUM = 2*SUM
166          CALL ZLASSQ( N, A, LDA+1SCALESUM )
167          VALUE = SCALE*SQRTSUM )
168       END IF
169 *
170       ZLANSY = VALUE
171       RETURN
172 *
173 *     End of ZLANSY
174 *
175       END