1       DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  2      $                 LDAB, WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORM, UPLO
 11       INTEGER            K, LDAB, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   WORK( * )
 15       COMPLEX*16         AB( LDAB, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZLANTB  returns the value of the one norm,  or the Frobenius norm, or
 22 *  the  infinity norm,  or the element of  largest absolute value  of an
 23 *  n by n triangular band matrix A,  with ( k + 1 ) diagonals.
 24 *
 25 *  Description
 26 *  ===========
 27 *
 28 *  ZLANTB returns the value
 29 *
 30 *     ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 31 *              (
 32 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 33 *              (
 34 *              ( normI(A),         NORM = 'I' or 'i'
 35 *              (
 36 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 37 *
 38 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 39 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 40 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 41 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  NORM    (input) CHARACTER*1
 47 *          Specifies the value to be returned in ZLANTB as described
 48 *          above.
 49 *
 50 *  UPLO    (input) CHARACTER*1
 51 *          Specifies whether the matrix A is upper or lower triangular.
 52 *          = 'U':  Upper triangular
 53 *          = 'L':  Lower triangular
 54 *
 55 *  DIAG    (input) CHARACTER*1
 56 *          Specifies whether or not the matrix A is unit triangular.
 57 *          = 'N':  Non-unit triangular
 58 *          = 'U':  Unit triangular
 59 *
 60 *  N       (input) INTEGER
 61 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANTB is
 62 *          set to zero.
 63 *
 64 *  K       (input) INTEGER
 65 *          The number of super-diagonals of the matrix A if UPLO = 'U',
 66 *          or the number of sub-diagonals of the matrix A if UPLO = 'L'.
 67 *          K >= 0.
 68 *
 69 *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 70 *          The upper or lower triangular band matrix A, stored in the
 71 *          first k+1 rows of AB.  The j-th column of A is stored
 72 *          in the j-th column of the array AB as follows:
 73 *          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 74 *          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 75 *          Note that when DIAG = 'U', the elements of the array AB
 76 *          corresponding to the diagonal elements of the matrix A are
 77 *          not referenced, but are assumed to be one.
 78 *
 79 *  LDAB    (input) INTEGER
 80 *          The leading dimension of the array AB.  LDAB >= K+1.
 81 *
 82 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 83 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 84 *          referenced.
 85 *
 86 * =====================================================================
 87 *
 88 *     .. Parameters ..
 89       DOUBLE PRECISION   ONE, ZERO
 90       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 91 *     ..
 92 *     .. Local Scalars ..
 93       LOGICAL            UDIAG
 94       INTEGER            I, J, L
 95       DOUBLE PRECISION   SCALESUMVALUE
 96 *     ..
 97 *     .. External Functions ..
 98       LOGICAL            LSAME
 99       EXTERNAL           LSAME
100 *     ..
101 *     .. External Subroutines ..
102       EXTERNAL           ZLASSQ
103 *     ..
104 *     .. Intrinsic Functions ..
105       INTRINSIC          ABSMAXMINSQRT
106 *     ..
107 *     .. Executable Statements ..
108 *
109       IF( N.EQ.0 ) THEN
110          VALUE = ZERO
111       ELSE IF( LSAME( NORM, 'M' ) ) THEN
112 *
113 *        Find max(abs(A(i,j))).
114 *
115          IF( LSAME( DIAG, 'U' ) ) THEN
116             VALUE = ONE
117             IF( LSAME( UPLO, 'U' ) ) THEN
118                DO 20 J = 1, N
119                   DO 10 I = MAX( K+2-J, 1 ), K
120                      VALUE = MAXVALUEABS( AB( I, J ) ) )
121    10             CONTINUE
122    20          CONTINUE
123             ELSE
124                DO 40 J = 1, N
125                   DO 30 I = 2MIN( N+1-J, K+1 )
126                      VALUE = MAXVALUEABS( AB( I, J ) ) )
127    30             CONTINUE
128    40          CONTINUE
129             END IF
130          ELSE
131             VALUE = ZERO
132             IF( LSAME( UPLO, 'U' ) ) THEN
133                DO 60 J = 1, N
134                   DO 50 I = MAX( K+2-J, 1 ), K + 1
135                      VALUE = MAXVALUEABS( AB( I, J ) ) )
136    50             CONTINUE
137    60          CONTINUE
138             ELSE
139                DO 80 J = 1, N
140                   DO 70 I = 1MIN( N+1-J, K+1 )
141                      VALUE = MAXVALUEABS( AB( I, J ) ) )
142    70             CONTINUE
143    80          CONTINUE
144             END IF
145          END IF
146       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
147 *
148 *        Find norm1(A).
149 *
150          VALUE = ZERO
151          UDIAG = LSAME( DIAG, 'U' )
152          IF( LSAME( UPLO, 'U' ) ) THEN
153             DO 110 J = 1, N
154                IF( UDIAG ) THEN
155                   SUM = ONE
156                   DO 90 I = MAX( K+2-J, 1 ), K
157                      SUM = SUM + ABS( AB( I, J ) )
158    90             CONTINUE
159                ELSE
160                   SUM = ZERO
161                   DO 100 I = MAX( K+2-J, 1 ), K + 1
162                      SUM = SUM + ABS( AB( I, J ) )
163   100             CONTINUE
164                END IF
165                VALUE = MAXVALUESUM )
166   110       CONTINUE
167          ELSE
168             DO 140 J = 1, N
169                IF( UDIAG ) THEN
170                   SUM = ONE
171                   DO 120 I = 2MIN( N+1-J, K+1 )
172                      SUM = SUM + ABS( AB( I, J ) )
173   120             CONTINUE
174                ELSE
175                   SUM = ZERO
176                   DO 130 I = 1MIN( N+1-J, K+1 )
177                      SUM = SUM + ABS( AB( I, J ) )
178   130             CONTINUE
179                END IF
180                VALUE = MAXVALUESUM )
181   140       CONTINUE
182          END IF
183       ELSE IF( LSAME( NORM, 'I' ) ) THEN
184 *
185 *        Find normI(A).
186 *
187          VALUE = ZERO
188          IF( LSAME( UPLO, 'U' ) ) THEN
189             IF( LSAME( DIAG, 'U' ) ) THEN
190                DO 150 I = 1, N
191                   WORK( I ) = ONE
192   150          CONTINUE
193                DO 170 J = 1, N
194                   L = K + 1 - J
195                   DO 160 I = MAX1, J-K ), J - 1
196                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
197   160             CONTINUE
198   170          CONTINUE
199             ELSE
200                DO 180 I = 1, N
201                   WORK( I ) = ZERO
202   180          CONTINUE
203                DO 200 J = 1, N
204                   L = K + 1 - J
205                   DO 190 I = MAX1, J-K ), J
206                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
207   190             CONTINUE
208   200          CONTINUE
209             END IF
210          ELSE
211             IF( LSAME( DIAG, 'U' ) ) THEN
212                DO 210 I = 1, N
213                   WORK( I ) = ONE
214   210          CONTINUE
215                DO 230 J = 1, N
216                   L = 1 - J
217                   DO 220 I = J + 1MIN( N, J+K )
218                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
219   220             CONTINUE
220   230          CONTINUE
221             ELSE
222                DO 240 I = 1, N
223                   WORK( I ) = ZERO
224   240          CONTINUE
225                DO 260 J = 1, N
226                   L = 1 - J
227                   DO 250 I = J, MIN( N, J+K )
228                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
229   250             CONTINUE
230   260          CONTINUE
231             END IF
232          END IF
233          DO 270 I = 1, N
234             VALUE = MAXVALUE, WORK( I ) )
235   270    CONTINUE
236       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
237 *
238 *        Find normF(A).
239 *
240          IF( LSAME( UPLO, 'U' ) ) THEN
241             IF( LSAME( DIAG, 'U' ) ) THEN
242                SCALE = ONE
243                SUM = N
244                IF( K.GT.0 ) THEN
245                   DO 280 J = 2, N
246                      CALL ZLASSQ( MIN( J-1, K ),
247      $                            AB( MAX( K+2-J, 1 ), J ), 1SCALE,
248      $                            SUM )
249   280             CONTINUE
250                END IF
251             ELSE
252                SCALE = ZERO
253                SUM = ONE
254                DO 290 J = 1, N
255                   CALL ZLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
256      $                         1SCALESUM )
257   290          CONTINUE
258             END IF
259          ELSE
260             IF( LSAME( DIAG, 'U' ) ) THEN
261                SCALE = ONE
262                SUM = N
263                IF( K.GT.0 ) THEN
264                   DO 300 J = 1, N - 1
265                      CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1SCALE,
266      $                            SUM )
267   300             CONTINUE
268                END IF
269             ELSE
270                SCALE = ZERO
271                SUM = ONE
272                DO 310 J = 1, N
273                   CALL ZLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1SCALE,
274      $                         SUM )
275   310          CONTINUE
276             END IF
277          END IF
278          VALUE = SCALE*SQRTSUM )
279       END IF
280 *
281       ZLANTB = VALUE
282       RETURN
283 *
284 *     End of ZLANTB
285 *
286       END