1       DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  2 *
  3 *  -- LAPACK auxiliary routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIAG, NORM, UPLO
 10       INTEGER            N
 11 *     ..
 12 *     .. Array Arguments ..
 13       DOUBLE PRECISION   WORK( * )
 14       COMPLEX*16         AP( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLANTP  returns the value of the one norm,  or the Frobenius norm, or
 21 *  the  infinity norm,  or the  element of  largest absolute value  of a
 22 *  triangular matrix A, supplied in packed form.
 23 *
 24 *  Description
 25 *  ===========
 26 *
 27 *  ZLANTP returns the value
 28 *
 29 *     ZLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 30 *              (
 31 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 32 *              (
 33 *              ( normI(A),         NORM = 'I' or 'i'
 34 *              (
 35 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 36 *
 37 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 38 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 39 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 40 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 41 *
 42 *  Arguments
 43 *  =========
 44 *
 45 *  NORM    (input) CHARACTER*1
 46 *          Specifies the value to be returned in ZLANTP as described
 47 *          above.
 48 *
 49 *  UPLO    (input) CHARACTER*1
 50 *          Specifies whether the matrix A is upper or lower triangular.
 51 *          = 'U':  Upper triangular
 52 *          = 'L':  Lower triangular
 53 *
 54 *  DIAG    (input) CHARACTER*1
 55 *          Specifies whether or not the matrix A is unit triangular.
 56 *          = 'N':  Non-unit triangular
 57 *          = 'U':  Unit triangular
 58 *
 59 *  N       (input) INTEGER
 60 *          The order of the matrix A.  N >= 0.  When N = 0, ZLANTP is
 61 *          set to zero.
 62 *
 63 *  AP      (input) COMPLEX*16 array, dimension (N*(N+1)/2)
 64 *          The upper or lower triangular matrix A, packed columnwise in
 65 *          a linear array.  The j-th column of A is stored in the array
 66 *          AP as follows:
 67 *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 68 *          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 69 *          Note that when DIAG = 'U', the elements of the array AP
 70 *          corresponding to the diagonal elements of the matrix A are
 71 *          not referenced, but are assumed to be one.
 72 *
 73 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 74 *          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 75 *          referenced.
 76 *
 77 * =====================================================================
 78 *
 79 *     .. Parameters ..
 80       DOUBLE PRECISION   ONE, ZERO
 81       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 82 *     ..
 83 *     .. Local Scalars ..
 84       LOGICAL            UDIAG
 85       INTEGER            I, J, K
 86       DOUBLE PRECISION   SCALESUMVALUE
 87 *     ..
 88 *     .. External Functions ..
 89       LOGICAL            LSAME
 90       EXTERNAL           LSAME
 91 *     ..
 92 *     .. External Subroutines ..
 93       EXTERNAL           ZLASSQ
 94 *     ..
 95 *     .. Intrinsic Functions ..
 96       INTRINSIC          ABSMAXSQRT
 97 *     ..
 98 *     .. Executable Statements ..
 99 *
100       IF( N.EQ.0 ) THEN
101          VALUE = ZERO
102       ELSE IF( LSAME( NORM, 'M' ) ) THEN
103 *
104 *        Find max(abs(A(i,j))).
105 *
106          K = 1
107          IF( LSAME( DIAG, 'U' ) ) THEN
108             VALUE = ONE
109             IF( LSAME( UPLO, 'U' ) ) THEN
110                DO 20 J = 1, N
111                   DO 10 I = K, K + J - 2
112                      VALUE = MAXVALUEABS( AP( I ) ) )
113    10             CONTINUE
114                   K = K + J
115    20          CONTINUE
116             ELSE
117                DO 40 J = 1, N
118                   DO 30 I = K + 1, K + N - J
119                      VALUE = MAXVALUEABS( AP( I ) ) )
120    30             CONTINUE
121                   K = K + N - J + 1
122    40          CONTINUE
123             END IF
124          ELSE
125             VALUE = ZERO
126             IF( LSAME( UPLO, 'U' ) ) THEN
127                DO 60 J = 1, N
128                   DO 50 I = K, K + J - 1
129                      VALUE = MAXVALUEABS( AP( I ) ) )
130    50             CONTINUE
131                   K = K + J
132    60          CONTINUE
133             ELSE
134                DO 80 J = 1, N
135                   DO 70 I = K, K + N - J
136                      VALUE = MAXVALUEABS( AP( I ) ) )
137    70             CONTINUE
138                   K = K + N - J + 1
139    80          CONTINUE
140             END IF
141          END IF
142       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
143 *
144 *        Find norm1(A).
145 *
146          VALUE = ZERO
147          K = 1
148          UDIAG = LSAME( DIAG, 'U' )
149          IF( LSAME( UPLO, 'U' ) ) THEN
150             DO 110 J = 1, N
151                IF( UDIAG ) THEN
152                   SUM = ONE
153                   DO 90 I = K, K + J - 2
154                      SUM = SUM + ABS( AP( I ) )
155    90             CONTINUE
156                ELSE
157                   SUM = ZERO
158                   DO 100 I = K, K + J - 1
159                      SUM = SUM + ABS( AP( I ) )
160   100             CONTINUE
161                END IF
162                K = K + J
163                VALUE = MAXVALUESUM )
164   110       CONTINUE
165          ELSE
166             DO 140 J = 1, N
167                IF( UDIAG ) THEN
168                   SUM = ONE
169                   DO 120 I = K + 1, K + N - J
170                      SUM = SUM + ABS( AP( I ) )
171   120             CONTINUE
172                ELSE
173                   SUM = ZERO
174                   DO 130 I = K, K + N - J
175                      SUM = SUM + ABS( AP( I ) )
176   130             CONTINUE
177                END IF
178                K = K + N - J + 1
179                VALUE = MAXVALUESUM )
180   140       CONTINUE
181          END IF
182       ELSE IF( LSAME( NORM, 'I' ) ) THEN
183 *
184 *        Find normI(A).
185 *
186          K = 1
187          IF( LSAME( UPLO, 'U' ) ) THEN
188             IF( LSAME( DIAG, 'U' ) ) THEN
189                DO 150 I = 1, N
190                   WORK( I ) = ONE
191   150          CONTINUE
192                DO 170 J = 1, N
193                   DO 160 I = 1, J - 1
194                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
195                      K = K + 1
196   160             CONTINUE
197                   K = K + 1
198   170          CONTINUE
199             ELSE
200                DO 180 I = 1, N
201                   WORK( I ) = ZERO
202   180          CONTINUE
203                DO 200 J = 1, N
204                   DO 190 I = 1, J
205                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
206                      K = K + 1
207   190             CONTINUE
208   200          CONTINUE
209             END IF
210          ELSE
211             IF( LSAME( DIAG, 'U' ) ) THEN
212                DO 210 I = 1, N
213                   WORK( I ) = ONE
214   210          CONTINUE
215                DO 230 J = 1, N
216                   K = K + 1
217                   DO 220 I = J + 1, N
218                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
219                      K = K + 1
220   220             CONTINUE
221   230          CONTINUE
222             ELSE
223                DO 240 I = 1, N
224                   WORK( I ) = ZERO
225   240          CONTINUE
226                DO 260 J = 1, N
227                   DO 250 I = J, N
228                      WORK( I ) = WORK( I ) + ABS( AP( K ) )
229                      K = K + 1
230   250             CONTINUE
231   260          CONTINUE
232             END IF
233          END IF
234          VALUE = ZERO
235          DO 270 I = 1, N
236             VALUE = MAXVALUE, WORK( I ) )
237   270    CONTINUE
238       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
239 *
240 *        Find normF(A).
241 *
242          IF( LSAME( UPLO, 'U' ) ) THEN
243             IF( LSAME( DIAG, 'U' ) ) THEN
244                SCALE = ONE
245                SUM = N
246                K = 2
247                DO 280 J = 2, N
248                   CALL ZLASSQ( J-1, AP( K ), 1SCALESUM )
249                   K = K + J
250   280          CONTINUE
251             ELSE
252                SCALE = ZERO
253                SUM = ONE
254                K = 1
255                DO 290 J = 1, N
256                   CALL ZLASSQ( J, AP( K ), 1SCALESUM )
257                   K = K + J
258   290          CONTINUE
259             END IF
260          ELSE
261             IF( LSAME( DIAG, 'U' ) ) THEN
262                SCALE = ONE
263                SUM = N
264                K = 2
265                DO 300 J = 1, N - 1
266                   CALL ZLASSQ( N-J, AP( K ), 1SCALESUM )
267                   K = K + N - J + 1
268   300          CONTINUE
269             ELSE
270                SCALE = ZERO
271                SUM = ONE
272                K = 1
273                DO 310 J = 1, N
274                   CALL ZLASSQ( N-J+1, AP( K ), 1SCALESUM )
275                   K = K + N - J + 1
276   310          CONTINUE
277             END IF
278          END IF
279          VALUE = SCALE*SQRTSUM )
280       END IF
281 *
282       ZLANTP = VALUE
283       RETURN
284 *
285 *     End of ZLANTP
286 *
287       END