1       DOUBLE PRECISION FUNCTION ZLANTR( NORM, UPLO, DIAG, M, N, A, LDA,
  2      $                 WORK )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORM, UPLO
 11       INTEGER            LDA, M, N
 12 *     ..
 13 *     .. Array Arguments ..
 14       DOUBLE PRECISION   WORK( * )
 15       COMPLEX*16         A( LDA, * )
 16 *     ..
 17 *
 18 *  Purpose
 19 *  =======
 20 *
 21 *  ZLANTR  returns the value of the one norm,  or the Frobenius norm, or
 22 *  the  infinity norm,  or the  element of  largest absolute value  of a
 23 *  trapezoidal or triangular matrix A.
 24 *
 25 *  Description
 26 *  ===========
 27 *
 28 *  ZLANTR returns the value
 29 *
 30 *     ZLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 31 *              (
 32 *              ( norm1(A),         NORM = '1', 'O' or 'o'
 33 *              (
 34 *              ( normI(A),         NORM = 'I' or 'i'
 35 *              (
 36 *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 37 *
 38 *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 39 *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 40 *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 41 *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 42 *
 43 *  Arguments
 44 *  =========
 45 *
 46 *  NORM    (input) CHARACTER*1
 47 *          Specifies the value to be returned in ZLANTR as described
 48 *          above.
 49 *
 50 *  UPLO    (input) CHARACTER*1
 51 *          Specifies whether the matrix A is upper or lower trapezoidal.
 52 *          = 'U':  Upper trapezoidal
 53 *          = 'L':  Lower trapezoidal
 54 *          Note that A is triangular instead of trapezoidal if M = N.
 55 *
 56 *  DIAG    (input) CHARACTER*1
 57 *          Specifies whether or not the matrix A has unit diagonal.
 58 *          = 'N':  Non-unit diagonal
 59 *          = 'U':  Unit diagonal
 60 *
 61 *  M       (input) INTEGER
 62 *          The number of rows of the matrix A.  M >= 0, and if
 63 *          UPLO = 'U', M <= N.  When M = 0, ZLANTR is set to zero.
 64 *
 65 *  N       (input) INTEGER
 66 *          The number of columns of the matrix A.  N >= 0, and if
 67 *          UPLO = 'L', N <= M.  When N = 0, ZLANTR is set to zero.
 68 *
 69 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 70 *          The trapezoidal matrix A (A is triangular if M = N).
 71 *          If UPLO = 'U', the leading m by n upper trapezoidal part of
 72 *          the array A contains the upper trapezoidal matrix, and the
 73 *          strictly lower triangular part of A is not referenced.
 74 *          If UPLO = 'L', the leading m by n lower trapezoidal part of
 75 *          the array A contains the lower trapezoidal matrix, and the
 76 *          strictly upper triangular part of A is not referenced.  Note
 77 *          that when DIAG = 'U', the diagonal elements of A are not
 78 *          referenced and are assumed to be one.
 79 *
 80 *  LDA     (input) INTEGER
 81 *          The leading dimension of the array A.  LDA >= max(M,1).
 82 *
 83 *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 84 *          where LWORK >= M when NORM = 'I'; otherwise, WORK is not
 85 *          referenced.
 86 *
 87 * =====================================================================
 88 *
 89 *     .. Parameters ..
 90       DOUBLE PRECISION   ONE, ZERO
 91       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 92 *     ..
 93 *     .. Local Scalars ..
 94       LOGICAL            UDIAG
 95       INTEGER            I, J
 96       DOUBLE PRECISION   SCALESUMVALUE
 97 *     ..
 98 *     .. External Functions ..
 99       LOGICAL            LSAME
100       EXTERNAL           LSAME
101 *     ..
102 *     .. External Subroutines ..
103       EXTERNAL           ZLASSQ
104 *     ..
105 *     .. Intrinsic Functions ..
106       INTRINSIC          ABSMAXMINSQRT
107 *     ..
108 *     .. Executable Statements ..
109 *
110       IFMIN( M, N ).EQ.0 ) THEN
111          VALUE = ZERO
112       ELSE IF( LSAME( NORM, 'M' ) ) THEN
113 *
114 *        Find max(abs(A(i,j))).
115 *
116          IF( LSAME( DIAG, 'U' ) ) THEN
117             VALUE = ONE
118             IF( LSAME( UPLO, 'U' ) ) THEN
119                DO 20 J = 1, N
120                   DO 10 I = 1MIN( M, J-1 )
121                      VALUE = MAXVALUEABS( A( I, J ) ) )
122    10             CONTINUE
123    20          CONTINUE
124             ELSE
125                DO 40 J = 1, N
126                   DO 30 I = J + 1, M
127                      VALUE = MAXVALUEABS( A( I, J ) ) )
128    30             CONTINUE
129    40          CONTINUE
130             END IF
131          ELSE
132             VALUE = ZERO
133             IF( LSAME( UPLO, 'U' ) ) THEN
134                DO 60 J = 1, N
135                   DO 50 I = 1MIN( M, J )
136                      VALUE = MAXVALUEABS( A( I, J ) ) )
137    50             CONTINUE
138    60          CONTINUE
139             ELSE
140                DO 80 J = 1, N
141                   DO 70 I = J, M
142                      VALUE = MAXVALUEABS( A( I, J ) ) )
143    70             CONTINUE
144    80          CONTINUE
145             END IF
146          END IF
147       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
148 *
149 *        Find norm1(A).
150 *
151          VALUE = ZERO
152          UDIAG = LSAME( DIAG, 'U' )
153          IF( LSAME( UPLO, 'U' ) ) THEN
154             DO 110 J = 1, N
155                IF( ( UDIAG ) .AND. ( J.LE.M ) ) THEN
156                   SUM = ONE
157                   DO 90 I = 1, J - 1
158                      SUM = SUM + ABS( A( I, J ) )
159    90             CONTINUE
160                ELSE
161                   SUM = ZERO
162                   DO 100 I = 1MIN( M, J )
163                      SUM = SUM + ABS( A( I, J ) )
164   100             CONTINUE
165                END IF
166                VALUE = MAXVALUESUM )
167   110       CONTINUE
168          ELSE
169             DO 140 J = 1, N
170                IF( UDIAG ) THEN
171                   SUM = ONE
172                   DO 120 I = J + 1, M
173                      SUM = SUM + ABS( A( I, J ) )
174   120             CONTINUE
175                ELSE
176                   SUM = ZERO
177                   DO 130 I = J, M
178                      SUM = SUM + ABS( A( I, J ) )
179   130             CONTINUE
180                END IF
181                VALUE = MAXVALUESUM )
182   140       CONTINUE
183          END IF
184       ELSE IF( LSAME( NORM, 'I' ) ) THEN
185 *
186 *        Find normI(A).
187 *
188          IF( LSAME( UPLO, 'U' ) ) THEN
189             IF( LSAME( DIAG, 'U' ) ) THEN
190                DO 150 I = 1, M
191                   WORK( I ) = ONE
192   150          CONTINUE
193                DO 170 J = 1, N
194                   DO 160 I = 1MIN( M, J-1 )
195                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
196   160             CONTINUE
197   170          CONTINUE
198             ELSE
199                DO 180 I = 1, M
200                   WORK( I ) = ZERO
201   180          CONTINUE
202                DO 200 J = 1, N
203                   DO 190 I = 1MIN( M, J )
204                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
205   190             CONTINUE
206   200          CONTINUE
207             END IF
208          ELSE
209             IF( LSAME( DIAG, 'U' ) ) THEN
210                DO 210 I = 1, N
211                   WORK( I ) = ONE
212   210          CONTINUE
213                DO 220 I = N + 1, M
214                   WORK( I ) = ZERO
215   220          CONTINUE
216                DO 240 J = 1, N
217                   DO 230 I = J + 1, M
218                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
219   230             CONTINUE
220   240          CONTINUE
221             ELSE
222                DO 250 I = 1, M
223                   WORK( I ) = ZERO
224   250          CONTINUE
225                DO 270 J = 1, N
226                   DO 260 I = J, M
227                      WORK( I ) = WORK( I ) + ABS( A( I, J ) )
228   260             CONTINUE
229   270          CONTINUE
230             END IF
231          END IF
232          VALUE = ZERO
233          DO 280 I = 1, M
234             VALUE = MAXVALUE, WORK( I ) )
235   280    CONTINUE
236       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
237 *
238 *        Find normF(A).
239 *
240          IF( LSAME( UPLO, 'U' ) ) THEN
241             IF( LSAME( DIAG, 'U' ) ) THEN
242                SCALE = ONE
243                SUM = MIN( M, N )
244                DO 290 J = 2, N
245                   CALL ZLASSQ( MIN( M, J-1 ), A( 1, J ), 1SCALESUM )
246   290          CONTINUE
247             ELSE
248                SCALE = ZERO
249                SUM = ONE
250                DO 300 J = 1, N
251                   CALL ZLASSQ( MIN( M, J ), A( 1, J ), 1SCALESUM )
252   300          CONTINUE
253             END IF
254          ELSE
255             IF( LSAME( DIAG, 'U' ) ) THEN
256                SCALE = ONE
257                SUM = MIN( M, N )
258                DO 310 J = 1, N
259                   CALL ZLASSQ( M-J, A( MIN( M, J+1 ), J ), 1SCALE,
260      $                         SUM )
261   310          CONTINUE
262             ELSE
263                SCALE = ZERO
264                SUM = ONE
265                DO 320 J = 1, N
266                   CALL ZLASSQ( M-J+1, A( J, J ), 1SCALESUM )
267   320          CONTINUE
268             END IF
269          END IF
270          VALUE = SCALE*SQRTSUM )
271       END IF
272 *
273       ZLANTR = VALUE
274       RETURN
275 *
276 *     End of ZLANTR
277 *
278       END