1       SUBROUTINE ZLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  2      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
 10       LOGICAL            WANTT, WANTZ
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
 14 *     ..
 15 *
 16 *     Purpose
 17 *     =======
 18 *
 19 *     ZLAQR0 computes the eigenvalues of a Hessenberg matrix H
 20 *     and, optionally, the matrices T and Z from the Schur decomposition
 21 *     H = Z T Z**H, where T is an upper triangular matrix (the
 22 *     Schur form), and Z is the unitary matrix of Schur vectors.
 23 *
 24 *     Optionally Z may be postmultiplied into an input unitary
 25 *     matrix Q so that this routine can give the Schur factorization
 26 *     of a matrix A which has been reduced to the Hessenberg form H
 27 *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
 28 *
 29 *     Arguments
 30 *     =========
 31 *
 32 *     WANTT   (input) LOGICAL
 33 *          = .TRUE. : the full Schur form T is required;
 34 *          = .FALSE.: only eigenvalues are required.
 35 *
 36 *     WANTZ   (input) LOGICAL
 37 *          = .TRUE. : the matrix of Schur vectors Z is required;
 38 *          = .FALSE.: Schur vectors are not required.
 39 *
 40 *     N     (input) INTEGER
 41 *           The order of the matrix H.  N .GE. 0.
 42 *
 43 *     ILO   (input) INTEGER
 44 *     IHI   (input) INTEGER
 45 *           It is assumed that H is already upper triangular in rows
 46 *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
 47 *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
 48 *           previous call to ZGEBAL, and then passed to ZGEHRD when the
 49 *           matrix output by ZGEBAL is reduced to Hessenberg form.
 50 *           Otherwise, ILO and IHI should be set to 1 and N,
 51 *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
 52 *           If N = 0, then ILO = 1 and IHI = 0.
 53 *
 54 *     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
 55 *           On entry, the upper Hessenberg matrix H.
 56 *           On exit, if INFO = 0 and WANTT is .TRUE., then H
 57 *           contains the upper triangular matrix T from the Schur
 58 *           decomposition (the Schur form). If INFO = 0 and WANT is
 59 *           .FALSE., then the contents of H are unspecified on exit.
 60 *           (The output value of H when INFO.GT.0 is given under the
 61 *           description of INFO below.)
 62 *
 63 *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
 64 *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
 65 *
 66 *     LDH   (input) INTEGER
 67 *           The leading dimension of the array H. LDH .GE. max(1,N).
 68 *
 69 *     W        (output) COMPLEX*16 array, dimension (N)
 70 *           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
 71 *           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
 72 *           stored in the same order as on the diagonal of the Schur
 73 *           form returned in H, with W(i) = H(i,i).
 74 *
 75 *     Z     (input/output) COMPLEX*16 array, dimension (LDZ,IHI)
 76 *           If WANTZ is .FALSE., then Z is not referenced.
 77 *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
 78 *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
 79 *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
 80 *           (The output value of Z when INFO.GT.0 is given under
 81 *           the description of INFO below.)
 82 *
 83 *     LDZ   (input) INTEGER
 84 *           The leading dimension of the array Z.  if WANTZ is .TRUE.
 85 *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
 86 *
 87 *     WORK  (workspace/output) COMPLEX*16 array, dimension LWORK
 88 *           On exit, if LWORK = -1, WORK(1) returns an estimate of
 89 *           the optimal value for LWORK.
 90 *
 91 *     LWORK (input) INTEGER
 92 *           The dimension of the array WORK.  LWORK .GE. max(1,N)
 93 *           is sufficient, but LWORK typically as large as 6*N may
 94 *           be required for optimal performance.  A workspace query
 95 *           to determine the optimal workspace size is recommended.
 96 *
 97 *           If LWORK = -1, then ZLAQR0 does a workspace query.
 98 *           In this case, ZLAQR0 checks the input parameters and
 99 *           estimates the optimal workspace size for the given
100 *           values of N, ILO and IHI.  The estimate is returned
101 *           in WORK(1).  No error message related to LWORK is
102 *           issued by XERBLA.  Neither H nor Z are accessed.
103 *
104 *
105 *     INFO  (output) INTEGER
106 *             =  0:  successful exit
107 *           .GT. 0:  if INFO = i, ZLAQR0 failed to compute all of
108 *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
109 *                and WI contain those eigenvalues which have been
110 *                successfully computed.  (Failures are rare.)
111 *
112 *                If INFO .GT. 0 and WANT is .FALSE., then on exit,
113 *                the remaining unconverged eigenvalues are the eigen-
114 *                values of the upper Hessenberg matrix rows and
115 *                columns ILO through INFO of the final, output
116 *                value of H.
117 *
118 *                If INFO .GT. 0 and WANTT is .TRUE., then on exit
119 *
120 *           (*)  (initial value of H)*U  = U*(final value of H)
121 *
122 *                where U is a unitary matrix.  The final
123 *                value of  H is upper Hessenberg and triangular in
124 *                rows and columns INFO+1 through IHI.
125 *
126 *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
127 *
128 *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
129 *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
130 *
131 *                where U is the unitary matrix in (*) (regard-
132 *                less of the value of WANTT.)
133 *
134 *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
135 *                accessed.
136 *
137 *     ================================================================
138 *     Based on contributions by
139 *        Karen Braman and Ralph Byers, Department of Mathematics,
140 *        University of Kansas, USA
141 *
142 *     ================================================================
143 *     References:
144 *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
145 *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
146 *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
147 *       929--947, 2002.
148 *
149 *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
150 *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
151 *       of Matrix Analysis, volume 23, pages 948--973, 2002.
152 *
153 *     ================================================================
154 *     .. Parameters ..
155 *
156 *     ==== Matrices of order NTINY or smaller must be processed by
157 *     .    ZLAHQR because of insufficient subdiagonal scratch space.
158 *     .    (This is a hard limit.) ====
159       INTEGER            NTINY
160       PARAMETER          ( NTINY = 11 )
161 *
162 *     ==== Exceptional deflation windows:  try to cure rare
163 *     .    slow convergence by varying the size of the
164 *     .    deflation window after KEXNW iterations. ====
165       INTEGER            KEXNW
166       PARAMETER          ( KEXNW = 5 )
167 *
168 *     ==== Exceptional shifts: try to cure rare slow convergence
169 *     .    with ad-hoc exceptional shifts every KEXSH iterations.
170 *     .    ====
171       INTEGER            KEXSH
172       PARAMETER          ( KEXSH = 6 )
173 *
174 *     ==== The constant WILK1 is used to form the exceptional
175 *     .    shifts. ====
176       DOUBLE PRECISION   WILK1
177       PARAMETER          ( WILK1 = 0.75d0 )
178       COMPLEX*16         ZERO, ONE
179       PARAMETER          ( ZERO = ( 0.0d00.0d0 ),
180      $                   ONE = ( 1.0d00.0d0 ) )
181       DOUBLE PRECISION   TWO
182       PARAMETER          ( TWO = 2.0d0 )
183 *     ..
184 *     .. Local Scalars ..
185       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
186       DOUBLE PRECISION   S
187       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
188      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
189      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
190      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
191       LOGICAL            SORTED
192       CHARACTER          JBCMPZ*2
193 *     ..
194 *     .. External Functions ..
195       INTEGER            ILAENV
196       EXTERNAL           ILAENV
197 *     ..
198 *     .. Local Arrays ..
199       COMPLEX*16         ZDUM( 11 )
200 *     ..
201 *     .. External Subroutines ..
202       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR3, ZLAQR4, ZLAQR5
203 *     ..
204 *     .. Intrinsic Functions ..
205       INTRINSIC          ABSDBLEDCMPLXDIMAGINTMAXMINMOD,
206      $                   SQRT
207 *     ..
208 *     .. Statement Functions ..
209       DOUBLE PRECISION   CABS1
210 *     ..
211 *     .. Statement Function definitions ..
212       CABS1( CDUM ) = ABSDBLE( CDUM ) ) + ABSDIMAG( CDUM ) )
213 *     ..
214 *     .. Executable Statements ..
215       INFO = 0
216 *
217 *     ==== Quick return for N = 0: nothing to do. ====
218 *
219       IF( N.EQ.0 ) THEN
220          WORK( 1 ) = ONE
221          RETURN
222       END IF
223 *
224       IF( N.LE.NTINY ) THEN
225 *
226 *        ==== Tiny matrices must use ZLAHQR. ====
227 *
228          LWKOPT = 1
229          IF( LWORK.NE.-1 )
230      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
231      $                   IHIZ, Z, LDZ, INFO )
232       ELSE
233 *
234 *        ==== Use small bulge multi-shift QR with aggressive early
235 *        .    deflation on larger-than-tiny matrices. ====
236 *
237 *        ==== Hope for the best. ====
238 *
239          INFO = 0
240 *
241 *        ==== Set up job flags for ILAENV. ====
242 *
243          IF( WANTT ) THEN
244             JBCMPZ( 11 ) = 'S'
245          ELSE
246             JBCMPZ( 11 ) = 'E'
247          END IF
248          IF( WANTZ ) THEN
249             JBCMPZ( 22 ) = 'V'
250          ELSE
251             JBCMPZ( 22 ) = 'N'
252          END IF
253 *
254 *        ==== NWR = recommended deflation window size.  At this
255 *        .    point,  N .GT. NTINY = 11, so there is enough
256 *        .    subdiagonal workspace for NWR.GE.2 as required.
257 *        .    (In fact, there is enough subdiagonal space for
258 *        .    NWR.GE.3.) ====
259 *
260          NWR = ILAENV( 13'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
261          NWR = MAX2, NWR )
262          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
263 *
264 *        ==== NSR = recommended number of simultaneous shifts.
265 *        .    At this point N .GT. NTINY = 11, so there is at
266 *        .    enough subdiagonal workspace for NSR to be even
267 *        .    and greater than or equal to two as required. ====
268 *
269          NSR = ILAENV( 15'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
270          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
271          NSR = MAX2, NSR-MOD( NSR, 2 ) )
272 *
273 *        ==== Estimate optimal workspace ====
274 *
275 *        ==== Workspace query call to ZLAQR3 ====
276 *
277          CALL ZLAQR3( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
278      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
279      $                LDH, WORK, -1 )
280 *
281 *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR3) ====
282 *
283          LWKOPT = MAX3*NSR / 2INT( WORK( 1 ) ) )
284 *
285 *        ==== Quick return in case of workspace query. ====
286 *
287          IF( LWORK.EQ.-1 ) THEN
288             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
289             RETURN
290          END IF
291 *
292 *        ==== ZLAHQR/ZLAQR0 crossover point ====
293 *
294          NMIN = ILAENV( 12'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
295          NMIN = MAX( NTINY, NMIN )
296 *
297 *        ==== Nibble crossover point ====
298 *
299          NIBBLE = ILAENV( 14'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
300          NIBBLE = MAX0, NIBBLE )
301 *
302 *        ==== Accumulate reflections during ttswp?  Use block
303 *        .    2-by-2 structure during matrix-matrix multiply? ====
304 *
305          KACC22 = ILAENV( 16'ZLAQR0', JBCMPZ, N, ILO, IHI, LWORK )
306          KACC22 = MAX0, KACC22 )
307          KACC22 = MIN2, KACC22 )
308 *
309 *        ==== NWMAX = the largest possible deflation window for
310 *        .    which there is sufficient workspace. ====
311 *
312          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
313          NW = NWMAX
314 *
315 *        ==== NSMAX = the Largest number of simultaneous shifts
316 *        .    for which there is sufficient workspace. ====
317 *
318          NSMAX = MIN( ( N+6 ) / 92*LWORK / 3 )
319          NSMAX = NSMAX - MOD( NSMAX, 2 )
320 *
321 *        ==== NDFL: an iteration count restarted at deflation. ====
322 *
323          NDFL = 1
324 *
325 *        ==== ITMAX = iteration limit ====
326 *
327          ITMAX = MAX302*KEXSH )*MAX10, ( IHI-ILO+1 ) )
328 *
329 *        ==== Last row and column in the active block ====
330 *
331          KBOT = IHI
332 *
333 *        ==== Main Loop ====
334 *
335          DO 70 IT = 1, ITMAX
336 *
337 *           ==== Done when KBOT falls below ILO ====
338 *
339             IF( KBOT.LT.ILO )
340      $         GO TO 80
341 *
342 *           ==== Locate active block ====
343 *
344             DO 10 K = KBOT, ILO + 1-1
345                IF( H( K, K-1 ).EQ.ZERO )
346      $            GO TO 20
347    10       CONTINUE
348             K = ILO
349    20       CONTINUE
350             KTOP = K
351 *
352 *           ==== Select deflation window size:
353 *           .    Typical Case:
354 *           .      If possible and advisable, nibble the entire
355 *           .      active block.  If not, use size MIN(NWR,NWMAX)
356 *           .      or MIN(NWR+1,NWMAX) depending upon which has
357 *           .      the smaller corresponding subdiagonal entry
358 *           .      (a heuristic).
359 *           .
360 *           .    Exceptional Case:
361 *           .      If there have been no deflations in KEXNW or
362 *           .      more iterations, then vary the deflation window
363 *           .      size.   At first, because, larger windows are,
364 *           .      in general, more powerful than smaller ones,
365 *           .      rapidly increase the window to the maximum possible.
366 *           .      Then, gradually reduce the window size. ====
367 *
368             NH = KBOT - KTOP + 1
369             NWUPBD = MIN( NH, NWMAX )
370             IF( NDFL.LT.KEXNW ) THEN
371                NW = MIN( NWUPBD, NWR )
372             ELSE
373                NW = MIN( NWUPBD, 2*NW )
374             END IF
375             IF( NW.LT.NWMAX ) THEN
376                IF( NW.GE.NH-1 ) THEN
377                   NW = NH
378                ELSE
379                   KWTOP = KBOT - NW + 1
380                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
381      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
382                END IF
383             END IF
384             IF( NDFL.LT.KEXNW ) THEN
385                NDEC = -1
386             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
387                NDEC = NDEC + 1
388                IF( NW-NDEC.LT.2 )
389      $            NDEC = 0
390                NW = NW - NDEC
391             END IF
392 *
393 *           ==== Aggressive early deflation:
394 *           .    split workspace under the subdiagonal into
395 *           .      - an nw-by-nw work array V in the lower
396 *           .        left-hand-corner,
397 *           .      - an NW-by-at-least-NW-but-more-is-better
398 *           .        (NW-by-NHO) horizontal work array along
399 *           .        the bottom edge,
400 *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
401 *           .        vertical work array along the left-hand-edge.
402 *           .        ====
403 *
404             KV = N - NW + 1
405             KT = NW + 1
406             NHO = ( N-NW-1 ) - KT + 1
407             KWV = NW + 2
408             NVE = ( N-NW ) - KWV + 1
409 *
410 *           ==== Aggressive early deflation ====
411 *
412             CALL ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
413      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
414      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
415      $                   LWORK )
416 *
417 *           ==== Adjust KBOT accounting for new deflations. ====
418 *
419             KBOT = KBOT - LD
420 *
421 *           ==== KS points to the shifts. ====
422 *
423             KS = KBOT - LS + 1
424 *
425 *           ==== Skip an expensive QR sweep if there is a (partly
426 *           .    heuristic) reason to expect that many eigenvalues
427 *           .    will deflate without it.  Here, the QR sweep is
428 *           .    skipped if many eigenvalues have just been deflated
429 *           .    or if the remaining active block is small.
430 *
431             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
432      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
433 *
434 *              ==== NS = nominal number of simultaneous shifts.
435 *              .    This may be lowered (slightly) if ZLAQR3
436 *              .    did not provide that many shifts. ====
437 *
438                NS = MIN( NSMAX, NSR, MAX2, KBOT-KTOP ) )
439                NS = NS - MOD( NS, 2 )
440 *
441 *              ==== If there have been no deflations
442 *              .    in a multiple of KEXSH iterations,
443 *              .    then try exceptional shifts.
444 *              .    Otherwise use shifts provided by
445 *              .    ZLAQR3 above or from the eigenvalues
446 *              .    of a trailing principal submatrix. ====
447 *
448                IFMOD( NDFL, KEXSH ).EQ.0 ) THEN
449                   KS = KBOT - NS + 1
450                   DO 30 I = KBOT, KS + 1-2
451                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
452                      W( I-1 ) = W( I )
453    30             CONTINUE
454                ELSE
455 *
456 *                 ==== Got NS/2 or fewer shifts? Use ZLAQR4 or
457 *                 .    ZLAHQR on a trailing principal submatrix to
458 *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
459 *                 .    there is enough space below the subdiagonal
460 *                 .    to fit an NS-by-NS scratch array.) ====
461 *
462                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
463                      KS = KBOT - NS + 1
464                      KT = N - NS + 1
465                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
466      $                            H( KT, 1 ), LDH )
467                      IF( NS.GT.NMIN ) THEN
468                         CALL ZLAQR4( .false..false., NS, 1, NS,
469      $                               H( KT, 1 ), LDH, W( KS ), 11,
470      $                               ZDUM, 1, WORK, LWORK, INF )
471                      ELSE
472                         CALL ZLAHQR( .false..false., NS, 1, NS,
473      $                               H( KT, 1 ), LDH, W( KS ), 11,
474      $                               ZDUM, 1, INF )
475                      END IF
476                      KS = KS + INF
477 *
478 *                    ==== In case of a rare QR failure use
479 *                    .    eigenvalues of the trailing 2-by-2
480 *                    .    principal submatrix.  Scale to avoid
481 *                    .    overflows, underflows and subnormals.
482 *                    .    (The scale factor S can not be zero,
483 *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
484 *
485                      IF( KS.GE.KBOT ) THEN
486                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
487      $                      CABS1( H( KBOT, KBOT-1 ) ) +
488      $                      CABS1( H( KBOT-1, KBOT ) ) +
489      $                      CABS1( H( KBOT, KBOT ) )
490                         AA = H( KBOT-1, KBOT-1 ) / S
491                         CC = H( KBOT, KBOT-1 ) / S
492                         BB = H( KBOT-1, KBOT ) / S
493                         DD = H( KBOT, KBOT ) / S
494                         TR2 = ( AA+DD ) / TWO
495                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
496                         RTDISC = SQRT-DET )
497                         W( KBOT-1 ) = ( TR2+RTDISC )*S
498                         W( KBOT ) = ( TR2-RTDISC )*S
499 *
500                         KS = KBOT - 1
501                      END IF
502                   END IF
503 *
504                   IF( KBOT-KS+1.GT.NS ) THEN
505 *
506 *                    ==== Sort the shifts (Helps a little) ====
507 *
508                      SORTED = .false.
509                      DO 50 K = KBOT, KS + 1-1
510                         IF( SORTED )
511      $                     GO TO 60
512                         SORTED = .true.
513                         DO 40 I = KS, K - 1
514                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
515      $                          THEN
516                               SORTED = .false.
517                               SWAP = W( I )
518                               W( I ) = W( I+1 )
519                               W( I+1 ) = SWAP
520                            END IF
521    40                   CONTINUE
522    50                CONTINUE
523    60                CONTINUE
524                   END IF
525                END IF
526 *
527 *              ==== If there are only two shifts, then use
528 *              .    only one.  ====
529 *
530                IF( KBOT-KS+1.EQ.2 ) THEN
531                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
532      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
533                      W( KBOT-1 ) = W( KBOT )
534                   ELSE
535                      W( KBOT ) = W( KBOT-1 )
536                   END IF
537                END IF
538 *
539 *              ==== Use up to NS of the the smallest magnatiude
540 *              .    shifts.  If there aren't NS shifts available,
541 *              .    then use them all, possibly dropping one to
542 *              .    make the number of shifts even. ====
543 *
544                NS = MIN( NS, KBOT-KS+1 )
545                NS = NS - MOD( NS, 2 )
546                KS = KBOT - NS + 1
547 *
548 *              ==== Small-bulge multi-shift QR sweep:
549 *              .    split workspace under the subdiagonal into
550 *              .    - a KDU-by-KDU work array U in the lower
551 *              .      left-hand-corner,
552 *              .    - a KDU-by-at-least-KDU-but-more-is-better
553 *              .      (KDU-by-NHo) horizontal work array WH along
554 *              .      the bottom edge,
555 *              .    - and an at-least-KDU-but-more-is-better-by-KDU
556 *              .      (NVE-by-KDU) vertical work WV arrow along
557 *              .      the left-hand-edge. ====
558 *
559                KDU = 3*NS - 3
560                KU = N - KDU + 1
561                KWH = KDU + 1
562                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
563                KWV = KDU + 4
564                NVE = N - KDU - KWV + 1
565 *
566 *              ==== Small-bulge multi-shift QR sweep ====
567 *
568                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
569      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
570      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
571      $                      NHO, H( KU, KWH ), LDH )
572             END IF
573 *
574 *           ==== Note progress (or the lack of it). ====
575 *
576             IF( LD.GT.0 ) THEN
577                NDFL = 1
578             ELSE
579                NDFL = NDFL + 1
580             END IF
581 *
582 *           ==== End of main loop ====
583    70    CONTINUE
584 *
585 *        ==== Iteration limit exceeded.  Set INFO to show where
586 *        .    the problem occurred and exit. ====
587 *
588          INFO = KBOT
589    80    CONTINUE
590       END IF
591 *
592 *     ==== Return the optimal value of LWORK. ====
593 *
594       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
595 *
596 *     ==== End of ZLAQR0 ====
597 *
598       END