1       SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
  2      $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
 10       LOGICAL            WANTT, WANTZ
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
 14 *     ..
 15 *
 16 *     This subroutine implements one level of recursion for ZLAQR0.
 17 *     It is a complete implementation of the small bulge multi-shift
 18 *     QR algorithm.  It may be called by ZLAQR0 and, for large enough
 19 *     deflation window size, it may be called by ZLAQR3.  This
 20 *     subroutine is identical to ZLAQR0 except that it calls ZLAQR2
 21 *     instead of ZLAQR3.
 22 *
 23 *     Purpose
 24 *     =======
 25 *
 26 *     ZLAQR4 computes the eigenvalues of a Hessenberg matrix H
 27 *     and, optionally, the matrices T and Z from the Schur decomposition
 28 *     H = Z T Z**H, where T is an upper triangular matrix (the
 29 *     Schur form), and Z is the unitary matrix of Schur vectors.
 30 *
 31 *     Optionally Z may be postmultiplied into an input unitary
 32 *     matrix Q so that this routine can give the Schur factorization
 33 *     of a matrix A which has been reduced to the Hessenberg form H
 34 *     by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
 35 *
 36 *     Arguments
 37 *     =========
 38 *
 39 *     WANTT   (input) LOGICAL
 40 *          = .TRUE. : the full Schur form T is required;
 41 *          = .FALSE.: only eigenvalues are required.
 42 *
 43 *     WANTZ   (input) LOGICAL
 44 *          = .TRUE. : the matrix of Schur vectors Z is required;
 45 *          = .FALSE.: Schur vectors are not required.
 46 *
 47 *     N     (input) INTEGER
 48 *           The order of the matrix H.  N .GE. 0.
 49 *
 50 *     ILO   (input) INTEGER
 51 *     IHI   (input) INTEGER
 52 *           It is assumed that H is already upper triangular in rows
 53 *           and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1,
 54 *           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
 55 *           previous call to ZGEBAL, and then passed to ZGEHRD when the
 56 *           matrix output by ZGEBAL is reduced to Hessenberg form.
 57 *           Otherwise, ILO and IHI should be set to 1 and N,
 58 *           respectively.  If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
 59 *           If N = 0, then ILO = 1 and IHI = 0.
 60 *
 61 *     H     (input/output) COMPLEX*16 array, dimension (LDH,N)
 62 *           On entry, the upper Hessenberg matrix H.
 63 *           On exit, if INFO = 0 and WANTT is .TRUE., then H
 64 *           contains the upper triangular matrix T from the Schur
 65 *           decomposition (the Schur form). If INFO = 0 and WANT is
 66 *           .FALSE., then the contents of H are unspecified on exit.
 67 *           (The output value of H when INFO.GT.0 is given under the
 68 *           description of INFO below.)
 69 *
 70 *           This subroutine may explicitly set H(i,j) = 0 for i.GT.j and
 71 *           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
 72 *
 73 *     LDH   (input) INTEGER
 74 *           The leading dimension of the array H. LDH .GE. max(1,N).
 75 *
 76 *     W        (output) COMPLEX*16 array, dimension (N)
 77 *           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
 78 *           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
 79 *           stored in the same order as on the diagonal of the Schur
 80 *           form returned in H, with W(i) = H(i,i).
 81 *
 82 *     Z     (input/output) COMPLEX*16 array, dimension (LDZ,IHI)
 83 *           If WANTZ is .FALSE., then Z is not referenced.
 84 *           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
 85 *           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
 86 *           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
 87 *           (The output value of Z when INFO.GT.0 is given under
 88 *           the description of INFO below.)
 89 *
 90 *     LDZ   (input) INTEGER
 91 *           The leading dimension of the array Z.  if WANTZ is .TRUE.
 92 *           then LDZ.GE.MAX(1,IHIZ).  Otherwize, LDZ.GE.1.
 93 *
 94 *     WORK  (workspace/output) COMPLEX*16 array, dimension LWORK
 95 *           On exit, if LWORK = -1, WORK(1) returns an estimate of
 96 *           the optimal value for LWORK.
 97 *
 98 *     LWORK (input) INTEGER
 99 *           The dimension of the array WORK.  LWORK .GE. max(1,N)
100 *           is sufficient, but LWORK typically as large as 6*N may
101 *           be required for optimal performance.  A workspace query
102 *           to determine the optimal workspace size is recommended.
103 *
104 *           If LWORK = -1, then ZLAQR4 does a workspace query.
105 *           In this case, ZLAQR4 checks the input parameters and
106 *           estimates the optimal workspace size for the given
107 *           values of N, ILO and IHI.  The estimate is returned
108 *           in WORK(1).  No error message related to LWORK is
109 *           issued by XERBLA.  Neither H nor Z are accessed.
110 *
111 *
112 *     INFO  (output) INTEGER
113 *             =  0:  successful exit
114 *           .GT. 0:  if INFO = i, ZLAQR4 failed to compute all of
115 *                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
116 *                and WI contain those eigenvalues which have been
117 *                successfully computed.  (Failures are rare.)
118 *
119 *                If INFO .GT. 0 and WANT is .FALSE., then on exit,
120 *                the remaining unconverged eigenvalues are the eigen-
121 *                values of the upper Hessenberg matrix rows and
122 *                columns ILO through INFO of the final, output
123 *                value of H.
124 *
125 *                If INFO .GT. 0 and WANTT is .TRUE., then on exit
126 *
127 *           (*)  (initial value of H)*U  = U*(final value of H)
128 *
129 *                where U is a unitary matrix.  The final
130 *                value of  H is upper Hessenberg and triangular in
131 *                rows and columns INFO+1 through IHI.
132 *
133 *                If INFO .GT. 0 and WANTZ is .TRUE., then on exit
134 *
135 *                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
136 *                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
137 *
138 *                where U is the unitary matrix in (*) (regard-
139 *                less of the value of WANTT.)
140 *
141 *                If INFO .GT. 0 and WANTZ is .FALSE., then Z is not
142 *                accessed.
143 *
144 *     ================================================================
145 *     Based on contributions by
146 *        Karen Braman and Ralph Byers, Department of Mathematics,
147 *        University of Kansas, USA
148 *
149 *     ================================================================
150 *     References:
151 *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
152 *       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
153 *       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
154 *       929--947, 2002.
155 *
156 *       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
157 *       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
158 *       of Matrix Analysis, volume 23, pages 948--973, 2002.
159 *
160 *     ================================================================
161 *     .. Parameters ..
162 *
163 *     ==== Matrices of order NTINY or smaller must be processed by
164 *     .    ZLAHQR because of insufficient subdiagonal scratch space.
165 *     .    (This is a hard limit.) ====
166       INTEGER            NTINY
167       PARAMETER          ( NTINY = 11 )
168 *
169 *     ==== Exceptional deflation windows:  try to cure rare
170 *     .    slow convergence by varying the size of the
171 *     .    deflation window after KEXNW iterations. ====
172       INTEGER            KEXNW
173       PARAMETER          ( KEXNW = 5 )
174 *
175 *     ==== Exceptional shifts: try to cure rare slow convergence
176 *     .    with ad-hoc exceptional shifts every KEXSH iterations.
177 *     .    ====
178       INTEGER            KEXSH
179       PARAMETER          ( KEXSH = 6 )
180 *
181 *     ==== The constant WILK1 is used to form the exceptional
182 *     .    shifts. ====
183       DOUBLE PRECISION   WILK1
184       PARAMETER          ( WILK1 = 0.75d0 )
185       COMPLEX*16         ZERO, ONE
186       PARAMETER          ( ZERO = ( 0.0d00.0d0 ),
187      $                   ONE = ( 1.0d00.0d0 ) )
188       DOUBLE PRECISION   TWO
189       PARAMETER          ( TWO = 2.0d0 )
190 *     ..
191 *     .. Local Scalars ..
192       COMPLEX*16         AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
193       DOUBLE PRECISION   S
194       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
195      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
196      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
197      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
198       LOGICAL            SORTED
199       CHARACTER          JBCMPZ*2
200 *     ..
201 *     .. External Functions ..
202       INTEGER            ILAENV
203       EXTERNAL           ILAENV
204 *     ..
205 *     .. Local Arrays ..
206       COMPLEX*16         ZDUM( 11 )
207 *     ..
208 *     .. External Subroutines ..
209       EXTERNAL           ZLACPY, ZLAHQR, ZLAQR2, ZLAQR5
210 *     ..
211 *     .. Intrinsic Functions ..
212       INTRINSIC          ABSDBLEDCMPLXDIMAGINTMAXMINMOD,
213      $                   SQRT
214 *     ..
215 *     .. Statement Functions ..
216       DOUBLE PRECISION   CABS1
217 *     ..
218 *     .. Statement Function definitions ..
219       CABS1( CDUM ) = ABSDBLE( CDUM ) ) + ABSDIMAG( CDUM ) )
220 *     ..
221 *     .. Executable Statements ..
222       INFO = 0
223 *
224 *     ==== Quick return for N = 0: nothing to do. ====
225 *
226       IF( N.EQ.0 ) THEN
227          WORK( 1 ) = ONE
228          RETURN
229       END IF
230 *
231       IF( N.LE.NTINY ) THEN
232 *
233 *        ==== Tiny matrices must use ZLAHQR. ====
234 *
235          LWKOPT = 1
236          IF( LWORK.NE.-1 )
237      $      CALL ZLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
238      $                   IHIZ, Z, LDZ, INFO )
239       ELSE
240 *
241 *        ==== Use small bulge multi-shift QR with aggressive early
242 *        .    deflation on larger-than-tiny matrices. ====
243 *
244 *        ==== Hope for the best. ====
245 *
246          INFO = 0
247 *
248 *        ==== Set up job flags for ILAENV. ====
249 *
250          IF( WANTT ) THEN
251             JBCMPZ( 11 ) = 'S'
252          ELSE
253             JBCMPZ( 11 ) = 'E'
254          END IF
255          IF( WANTZ ) THEN
256             JBCMPZ( 22 ) = 'V'
257          ELSE
258             JBCMPZ( 22 ) = 'N'
259          END IF
260 *
261 *        ==== NWR = recommended deflation window size.  At this
262 *        .    point,  N .GT. NTINY = 11, so there is enough
263 *        .    subdiagonal workspace for NWR.GE.2 as required.
264 *        .    (In fact, there is enough subdiagonal space for
265 *        .    NWR.GE.3.) ====
266 *
267          NWR = ILAENV( 13'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
268          NWR = MAX2, NWR )
269          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
270 *
271 *        ==== NSR = recommended number of simultaneous shifts.
272 *        .    At this point N .GT. NTINY = 11, so there is at
273 *        .    enough subdiagonal workspace for NSR to be even
274 *        .    and greater than or equal to two as required. ====
275 *
276          NSR = ILAENV( 15'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
277          NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
278          NSR = MAX2, NSR-MOD( NSR, 2 ) )
279 *
280 *        ==== Estimate optimal workspace ====
281 *
282 *        ==== Workspace query call to ZLAQR2 ====
283 *
284          CALL ZLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
285      $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
286      $                LDH, WORK, -1 )
287 *
288 *        ==== Optimal workspace = MAX(ZLAQR5, ZLAQR2) ====
289 *
290          LWKOPT = MAX3*NSR / 2INT( WORK( 1 ) ) )
291 *
292 *        ==== Quick return in case of workspace query. ====
293 *
294          IF( LWORK.EQ.-1 ) THEN
295             WORK( 1 ) = DCMPLX( LWKOPT, 0 )
296             RETURN
297          END IF
298 *
299 *        ==== ZLAHQR/ZLAQR0 crossover point ====
300 *
301          NMIN = ILAENV( 12'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
302          NMIN = MAX( NTINY, NMIN )
303 *
304 *        ==== Nibble crossover point ====
305 *
306          NIBBLE = ILAENV( 14'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
307          NIBBLE = MAX0, NIBBLE )
308 *
309 *        ==== Accumulate reflections during ttswp?  Use block
310 *        .    2-by-2 structure during matrix-matrix multiply? ====
311 *
312          KACC22 = ILAENV( 16'ZLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
313          KACC22 = MAX0, KACC22 )
314          KACC22 = MIN2, KACC22 )
315 *
316 *        ==== NWMAX = the largest possible deflation window for
317 *        .    which there is sufficient workspace. ====
318 *
319          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
320          NW = NWMAX
321 *
322 *        ==== NSMAX = the Largest number of simultaneous shifts
323 *        .    for which there is sufficient workspace. ====
324 *
325          NSMAX = MIN( ( N+6 ) / 92*LWORK / 3 )
326          NSMAX = NSMAX - MOD( NSMAX, 2 )
327 *
328 *        ==== NDFL: an iteration count restarted at deflation. ====
329 *
330          NDFL = 1
331 *
332 *        ==== ITMAX = iteration limit ====
333 *
334          ITMAX = MAX302*KEXSH )*MAX10, ( IHI-ILO+1 ) )
335 *
336 *        ==== Last row and column in the active block ====
337 *
338          KBOT = IHI
339 *
340 *        ==== Main Loop ====
341 *
342          DO 70 IT = 1, ITMAX
343 *
344 *           ==== Done when KBOT falls below ILO ====
345 *
346             IF( KBOT.LT.ILO )
347      $         GO TO 80
348 *
349 *           ==== Locate active block ====
350 *
351             DO 10 K = KBOT, ILO + 1-1
352                IF( H( K, K-1 ).EQ.ZERO )
353      $            GO TO 20
354    10       CONTINUE
355             K = ILO
356    20       CONTINUE
357             KTOP = K
358 *
359 *           ==== Select deflation window size:
360 *           .    Typical Case:
361 *           .      If possible and advisable, nibble the entire
362 *           .      active block.  If not, use size MIN(NWR,NWMAX)
363 *           .      or MIN(NWR+1,NWMAX) depending upon which has
364 *           .      the smaller corresponding subdiagonal entry
365 *           .      (a heuristic).
366 *           .
367 *           .    Exceptional Case:
368 *           .      If there have been no deflations in KEXNW or
369 *           .      more iterations, then vary the deflation window
370 *           .      size.   At first, because, larger windows are,
371 *           .      in general, more powerful than smaller ones,
372 *           .      rapidly increase the window to the maximum possible.
373 *           .      Then, gradually reduce the window size. ====
374 *
375             NH = KBOT - KTOP + 1
376             NWUPBD = MIN( NH, NWMAX )
377             IF( NDFL.LT.KEXNW ) THEN
378                NW = MIN( NWUPBD, NWR )
379             ELSE
380                NW = MIN( NWUPBD, 2*NW )
381             END IF
382             IF( NW.LT.NWMAX ) THEN
383                IF( NW.GE.NH-1 ) THEN
384                   NW = NH
385                ELSE
386                   KWTOP = KBOT - NW + 1
387                   IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
388      $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
389                END IF
390             END IF
391             IF( NDFL.LT.KEXNW ) THEN
392                NDEC = -1
393             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
394                NDEC = NDEC + 1
395                IF( NW-NDEC.LT.2 )
396      $            NDEC = 0
397                NW = NW - NDEC
398             END IF
399 *
400 *           ==== Aggressive early deflation:
401 *           .    split workspace under the subdiagonal into
402 *           .      - an nw-by-nw work array V in the lower
403 *           .        left-hand-corner,
404 *           .      - an NW-by-at-least-NW-but-more-is-better
405 *           .        (NW-by-NHO) horizontal work array along
406 *           .        the bottom edge,
407 *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
408 *           .        vertical work array along the left-hand-edge.
409 *           .        ====
410 *
411             KV = N - NW + 1
412             KT = NW + 1
413             NHO = ( N-NW-1 ) - KT + 1
414             KWV = NW + 2
415             NVE = ( N-NW ) - KWV + 1
416 *
417 *           ==== Aggressive early deflation ====
418 *
419             CALL ZLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
420      $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
421      $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
422      $                   LWORK )
423 *
424 *           ==== Adjust KBOT accounting for new deflations. ====
425 *
426             KBOT = KBOT - LD
427 *
428 *           ==== KS points to the shifts. ====
429 *
430             KS = KBOT - LS + 1
431 *
432 *           ==== Skip an expensive QR sweep if there is a (partly
433 *           .    heuristic) reason to expect that many eigenvalues
434 *           .    will deflate without it.  Here, the QR sweep is
435 *           .    skipped if many eigenvalues have just been deflated
436 *           .    or if the remaining active block is small.
437 *
438             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
439      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
440 *
441 *              ==== NS = nominal number of simultaneous shifts.
442 *              .    This may be lowered (slightly) if ZLAQR2
443 *              .    did not provide that many shifts. ====
444 *
445                NS = MIN( NSMAX, NSR, MAX2, KBOT-KTOP ) )
446                NS = NS - MOD( NS, 2 )
447 *
448 *              ==== If there have been no deflations
449 *              .    in a multiple of KEXSH iterations,
450 *              .    then try exceptional shifts.
451 *              .    Otherwise use shifts provided by
452 *              .    ZLAQR2 above or from the eigenvalues
453 *              .    of a trailing principal submatrix. ====
454 *
455                IFMOD( NDFL, KEXSH ).EQ.0 ) THEN
456                   KS = KBOT - NS + 1
457                   DO 30 I = KBOT, KS + 1-2
458                      W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
459                      W( I-1 ) = W( I )
460    30             CONTINUE
461                ELSE
462 *
463 *                 ==== Got NS/2 or fewer shifts? Use ZLAHQR
464 *                 .    on a trailing principal submatrix to
465 *                 .    get more. (Since NS.LE.NSMAX.LE.(N+6)/9,
466 *                 .    there is enough space below the subdiagonal
467 *                 .    to fit an NS-by-NS scratch array.) ====
468 *
469                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
470                      KS = KBOT - NS + 1
471                      KT = N - NS + 1
472                      CALL ZLACPY( 'A', NS, NS, H( KS, KS ), LDH,
473      $                            H( KT, 1 ), LDH )
474                      CALL ZLAHQR( .false..false., NS, 1, NS,
475      $                            H( KT, 1 ), LDH, W( KS ), 11, ZDUM,
476      $                            1, INF )
477                      KS = KS + INF
478 *
479 *                    ==== In case of a rare QR failure use
480 *                    .    eigenvalues of the trailing 2-by-2
481 *                    .    principal submatrix.  Scale to avoid
482 *                    .    overflows, underflows and subnormals.
483 *                    .    (The scale factor S can not be zero,
484 *                    .    because H(KBOT,KBOT-1) is nonzero.) ====
485 *
486                      IF( KS.GE.KBOT ) THEN
487                         S = CABS1( H( KBOT-1, KBOT-1 ) ) +
488      $                      CABS1( H( KBOT, KBOT-1 ) ) +
489      $                      CABS1( H( KBOT-1, KBOT ) ) +
490      $                      CABS1( H( KBOT, KBOT ) )
491                         AA = H( KBOT-1, KBOT-1 ) / S
492                         CC = H( KBOT, KBOT-1 ) / S
493                         BB = H( KBOT-1, KBOT ) / S
494                         DD = H( KBOT, KBOT ) / S
495                         TR2 = ( AA+DD ) / TWO
496                         DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
497                         RTDISC = SQRT-DET )
498                         W( KBOT-1 ) = ( TR2+RTDISC )*S
499                         W( KBOT ) = ( TR2-RTDISC )*S
500 *
501                         KS = KBOT - 1
502                      END IF
503                   END IF
504 *
505                   IF( KBOT-KS+1.GT.NS ) THEN
506 *
507 *                    ==== Sort the shifts (Helps a little) ====
508 *
509                      SORTED = .false.
510                      DO 50 K = KBOT, KS + 1-1
511                         IF( SORTED )
512      $                     GO TO 60
513                         SORTED = .true.
514                         DO 40 I = KS, K - 1
515                            IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
516      $                          THEN
517                               SORTED = .false.
518                               SWAP = W( I )
519                               W( I ) = W( I+1 )
520                               W( I+1 ) = SWAP
521                            END IF
522    40                   CONTINUE
523    50                CONTINUE
524    60                CONTINUE
525                   END IF
526                END IF
527 *
528 *              ==== If there are only two shifts, then use
529 *              .    only one.  ====
530 *
531                IF( KBOT-KS+1.EQ.2 ) THEN
532                   IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
533      $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
534                      W( KBOT-1 ) = W( KBOT )
535                   ELSE
536                      W( KBOT ) = W( KBOT-1 )
537                   END IF
538                END IF
539 *
540 *              ==== Use up to NS of the the smallest magnatiude
541 *              .    shifts.  If there aren't NS shifts available,
542 *              .    then use them all, possibly dropping one to
543 *              .    make the number of shifts even. ====
544 *
545                NS = MIN( NS, KBOT-KS+1 )
546                NS = NS - MOD( NS, 2 )
547                KS = KBOT - NS + 1
548 *
549 *              ==== Small-bulge multi-shift QR sweep:
550 *              .    split workspace under the subdiagonal into
551 *              .    - a KDU-by-KDU work array U in the lower
552 *              .      left-hand-corner,
553 *              .    - a KDU-by-at-least-KDU-but-more-is-better
554 *              .      (KDU-by-NHo) horizontal work array WH along
555 *              .      the bottom edge,
556 *              .    - and an at-least-KDU-but-more-is-better-by-KDU
557 *              .      (NVE-by-KDU) vertical work WV arrow along
558 *              .      the left-hand-edge. ====
559 *
560                KDU = 3*NS - 3
561                KU = N - KDU + 1
562                KWH = KDU + 1
563                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
564                KWV = KDU + 4
565                NVE = N - KDU - KWV + 1
566 *
567 *              ==== Small-bulge multi-shift QR sweep ====
568 *
569                CALL ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
570      $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
571      $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
572      $                      NHO, H( KU, KWH ), LDH )
573             END IF
574 *
575 *           ==== Note progress (or the lack of it). ====
576 *
577             IF( LD.GT.0 ) THEN
578                NDFL = 1
579             ELSE
580                NDFL = NDFL + 1
581             END IF
582 *
583 *           ==== End of main loop ====
584    70    CONTINUE
585 *
586 *        ==== Iteration limit exceeded.  Set INFO to show where
587 *        .    the problem occurred and exit. ====
588 *
589          INFO = KBOT
590    80    CONTINUE
591       END IF
592 *
593 *     ==== Return the optimal value of LWORK. ====
594 *
595       WORK( 1 ) = DCMPLX( LWKOPT, 0 )
596 *
597 *     ==== End of ZLAQR4 ====
598 *
599       END