1 SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
2 $ ISPLIT, M, DOL, DOU, MINRGP,
3 $ RTOL1, RTOL2, W, WERR, WGAP,
4 $ IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
5 $ WORK, IWORK, INFO )
6 *
7 * -- LAPACK auxiliary routine (version 3.3.1) --
8 * -- LAPACK is a software package provided by Univ. of Tennessee, --
9 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
10 * -- April 2011 --
11 *
12 * .. Scalar Arguments ..
13 INTEGER DOL, DOU, INFO, LDZ, M, N
14 DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
15 * ..
16 * .. Array Arguments ..
17 INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
18 $ ISUPPZ( * ), IWORK( * )
19 DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
20 $ WGAP( * ), WORK( * )
21 COMPLEX*16 Z( LDZ, * )
22 * ..
23 *
24 * Purpose
25 * =======
26 *
27 * ZLARRV computes the eigenvectors of the tridiagonal matrix
28 * T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
29 * The input eigenvalues should have been computed by DLARRE.
30 *
31 * Arguments
32 * =========
33 *
34 * N (input) INTEGER
35 * The order of the matrix. N >= 0.
36 *
37 * VL (input) DOUBLE PRECISION
38 * VU (input) DOUBLE PRECISION
39 * Lower and upper bounds of the interval that contains the desired
40 * eigenvalues. VL < VU. Needed to compute gaps on the left or right
41 * end of the extremal eigenvalues in the desired RANGE.
42 *
43 * D (input/output) DOUBLE PRECISION array, dimension (N)
44 * On entry, the N diagonal elements of the diagonal matrix D.
45 * On exit, D may be overwritten.
46 *
47 * L (input/output) DOUBLE PRECISION array, dimension (N)
48 * On entry, the (N-1) subdiagonal elements of the unit
49 * bidiagonal matrix L are in elements 1 to N-1 of L
50 * (if the matrix is not splitted.) At the end of each block
51 * is stored the corresponding shift as given by DLARRE.
52 * On exit, L is overwritten.
53 *
54 * PIVMIN (in) DOUBLE PRECISION
55 * The minimum pivot allowed in the Sturm sequence.
56 *
57 * ISPLIT (input) INTEGER array, dimension (N)
58 * The splitting points, at which T breaks up into blocks.
59 * The first block consists of rows/columns 1 to
60 * ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
61 * through ISPLIT( 2 ), etc.
62 *
63 * M (input) INTEGER
64 * The total number of input eigenvalues. 0 <= M <= N.
65 *
66 * DOL (input) INTEGER
67 * DOU (input) INTEGER
68 * If the user wants to compute only selected eigenvectors from all
69 * the eigenvalues supplied, he can specify an index range DOL:DOU.
70 * Or else the setting DOL=1, DOU=M should be applied.
71 * Note that DOL and DOU refer to the order in which the eigenvalues
72 * are stored in W.
73 * If the user wants to compute only selected eigenpairs, then
74 * the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
75 * computed eigenvectors. All other columns of Z are set to zero.
76 *
77 * MINRGP (input) DOUBLE PRECISION
78 *
79 * RTOL1 (input) DOUBLE PRECISION
80 * RTOL2 (input) DOUBLE PRECISION
81 * Parameters for bisection.
82 * An interval [LEFT,RIGHT] has converged if
83 * RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
84 *
85 * W (input/output) DOUBLE PRECISION array, dimension (N)
86 * The first M elements of W contain the APPROXIMATE eigenvalues for
87 * which eigenvectors are to be computed. The eigenvalues
88 * should be grouped by split-off block and ordered from
89 * smallest to largest within the block ( The output array
90 * W from DLARRE is expected here ). Furthermore, they are with
91 * respect to the shift of the corresponding root representation
92 * for their block. On exit, W holds the eigenvalues of the
93 * UNshifted matrix.
94 *
95 * WERR (input/output) DOUBLE PRECISION array, dimension (N)
96 * The first M elements contain the semiwidth of the uncertainty
97 * interval of the corresponding eigenvalue in W
98 *
99 * WGAP (input/output) DOUBLE PRECISION array, dimension (N)
100 * The separation from the right neighbor eigenvalue in W.
101 *
102 * IBLOCK (input) INTEGER array, dimension (N)
103 * The indices of the blocks (submatrices) associated with the
104 * corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
105 * W(i) belongs to the first block from the top, =2 if W(i)
106 * belongs to the second block, etc.
107 *
108 * INDEXW (input) INTEGER array, dimension (N)
109 * The indices of the eigenvalues within each block (submatrix);
110 * for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
111 * i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
112 *
113 * GERS (input) DOUBLE PRECISION array, dimension (2*N)
114 * The N Gerschgorin intervals (the i-th Gerschgorin interval
115 * is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
116 * be computed from the original UNshifted matrix.
117 *
118 * Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
119 * If INFO = 0, the first M columns of Z contain the
120 * orthonormal eigenvectors of the matrix T
121 * corresponding to the input eigenvalues, with the i-th
122 * column of Z holding the eigenvector associated with W(i).
123 * Note: the user must ensure that at least max(1,M) columns are
124 * supplied in the array Z.
125 *
126 * LDZ (input) INTEGER
127 * The leading dimension of the array Z. LDZ >= 1, and if
128 * JOBZ = 'V', LDZ >= max(1,N).
129 *
130 * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
131 * The support of the eigenvectors in Z, i.e., the indices
132 * indicating the nonzero elements in Z. The I-th eigenvector
133 * is nonzero only in elements ISUPPZ( 2*I-1 ) through
134 * ISUPPZ( 2*I ).
135 *
136 * WORK (workspace) DOUBLE PRECISION array, dimension (12*N)
137 *
138 * IWORK (workspace) INTEGER array, dimension (7*N)
139 *
140 * INFO (output) INTEGER
141 * = 0: successful exit
142 *
143 * > 0: A problem occured in ZLARRV.
144 * < 0: One of the called subroutines signaled an internal problem.
145 * Needs inspection of the corresponding parameter IINFO
146 * for further information.
147 *
148 * =-1: Problem in DLARRB when refining a child's eigenvalues.
149 * =-2: Problem in DLARRF when computing the RRR of a child.
150 * When a child is inside a tight cluster, it can be difficult
151 * to find an RRR. A partial remedy from the user's point of
152 * view is to make the parameter MINRGP smaller and recompile.
153 * However, as the orthogonality of the computed vectors is
154 * proportional to 1/MINRGP, the user should be aware that
155 * he might be trading in precision when he decreases MINRGP.
156 * =-3: Problem in DLARRB when refining a single eigenvalue
157 * after the Rayleigh correction was rejected.
158 * = 5: The Rayleigh Quotient Iteration failed to converge to
159 * full accuracy in MAXITR steps.
160 *
161 * Further Details
162 * ===============
163 *
164 * Based on contributions by
165 * Beresford Parlett, University of California, Berkeley, USA
166 * Jim Demmel, University of California, Berkeley, USA
167 * Inderjit Dhillon, University of Texas, Austin, USA
168 * Osni Marques, LBNL/NERSC, USA
169 * Christof Voemel, University of California, Berkeley, USA
170 *
171 * =====================================================================
172 *
173 * .. Parameters ..
174 INTEGER MAXITR
175 PARAMETER ( MAXITR = 10 )
176 COMPLEX*16 CZERO
177 PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ) )
178 DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, HALF
179 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0,
180 $ TWO = 2.0D0, THREE = 3.0D0,
181 $ FOUR = 4.0D0, HALF = 0.5D0)
182 * ..
183 * .. Local Scalars ..
184 LOGICAL ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
185 INTEGER DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
186 $ IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
187 $ INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
188 $ ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
189 $ NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
190 $ NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
191 $ OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
192 $ WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
193 $ ZUSEDW
194 INTEGER INDIN1, INDIN2
195 DOUBLE PRECISION BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
196 $ LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
197 $ RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
198 $ SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
199 * ..
200 * .. External Functions ..
201 DOUBLE PRECISION DLAMCH
202 EXTERNAL DLAMCH
203 * ..
204 * .. External Subroutines ..
205 EXTERNAL DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
206 $ ZLASET
207 * ..
208 * .. Intrinsic Functions ..
209 INTRINSIC ABS, DBLE, MAX, MIN
210 INTRINSIC DCMPLX
211 * ..
212 * .. Executable Statements ..
213 * ..
214
215 * The first N entries of WORK are reserved for the eigenvalues
216 INDLD = N+1
217 INDLLD= 2*N+1
218 INDIN1 = 3*N + 1
219 INDIN2 = 4*N + 1
220 INDWRK = 5*N + 1
221 MINWSIZE = 12 * N
222
223 DO 5 I= 1,MINWSIZE
224 WORK( I ) = ZERO
225 5 CONTINUE
226
227 * IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
228 * factorization used to compute the FP vector
229 IINDR = 0
230 * IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
231 * layer and the one above.
232 IINDC1 = N
233 IINDC2 = 2*N
234 IINDWK = 3*N + 1
235
236 MINIWSIZE = 7 * N
237 DO 10 I= 1,MINIWSIZE
238 IWORK( I ) = 0
239 10 CONTINUE
240
241 ZUSEDL = 1
242 IF(DOL.GT.1) THEN
243 * Set lower bound for use of Z
244 ZUSEDL = DOL-1
245 ENDIF
246 ZUSEDU = M
247 IF(DOU.LT.M) THEN
248 * Set lower bound for use of Z
249 ZUSEDU = DOU+1
250 ENDIF
251 * The width of the part of Z that is used
252 ZUSEDW = ZUSEDU - ZUSEDL + 1
253
254
255 CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
256 $ Z(1,ZUSEDL), LDZ )
257
258 EPS = DLAMCH( 'Precision' )
259 RQTOL = TWO * EPS
260 *
261 * Set expert flags for standard code.
262 TRYRQC = .TRUE.
263
264 IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
265 ELSE
266 * Only selected eigenpairs are computed. Since the other evalues
267 * are not refined by RQ iteration, bisection has to compute to full
268 * accuracy.
269 RTOL1 = FOUR * EPS
270 RTOL2 = FOUR * EPS
271 ENDIF
272
273 * The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
274 * desired eigenvalues. The support of the nonzero eigenvector
275 * entries is contained in the interval IBEGIN:IEND.
276 * Remark that if k eigenpairs are desired, then the eigenvectors
277 * are stored in k contiguous columns of Z.
278
279 * DONE is the number of eigenvectors already computed
280 DONE = 0
281 IBEGIN = 1
282 WBEGIN = 1
283 DO 170 JBLK = 1, IBLOCK( M )
284 IEND = ISPLIT( JBLK )
285 SIGMA = L( IEND )
286 * Find the eigenvectors of the submatrix indexed IBEGIN
287 * through IEND.
288 WEND = WBEGIN - 1
289 15 CONTINUE
290 IF( WEND.LT.M ) THEN
291 IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
292 WEND = WEND + 1
293 GO TO 15
294 END IF
295 END IF
296 IF( WEND.LT.WBEGIN ) THEN
297 IBEGIN = IEND + 1
298 GO TO 170
299 ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
300 IBEGIN = IEND + 1
301 WBEGIN = WEND + 1
302 GO TO 170
303 END IF
304
305 * Find local spectral diameter of the block
306 GL = GERS( 2*IBEGIN-1 )
307 GU = GERS( 2*IBEGIN )
308 DO 20 I = IBEGIN+1 , IEND
309 GL = MIN( GERS( 2*I-1 ), GL )
310 GU = MAX( GERS( 2*I ), GU )
311 20 CONTINUE
312 SPDIAM = GU - GL
313
314 * OLDIEN is the last index of the previous block
315 OLDIEN = IBEGIN - 1
316 * Calculate the size of the current block
317 IN = IEND - IBEGIN + 1
318 * The number of eigenvalues in the current block
319 IM = WEND - WBEGIN + 1
320
321 * This is for a 1x1 block
322 IF( IBEGIN.EQ.IEND ) THEN
323 DONE = DONE+1
324 Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
325 ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
326 ISUPPZ( 2*WBEGIN ) = IBEGIN
327 W( WBEGIN ) = W( WBEGIN ) + SIGMA
328 WORK( WBEGIN ) = W( WBEGIN )
329 IBEGIN = IEND + 1
330 WBEGIN = WBEGIN + 1
331 GO TO 170
332 END IF
333
334 * The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
335 * Note that these can be approximations, in this case, the corresp.
336 * entries of WERR give the size of the uncertainty interval.
337 * The eigenvalue approximations will be refined when necessary as
338 * high relative accuracy is required for the computation of the
339 * corresponding eigenvectors.
340 CALL DCOPY( IM, W( WBEGIN ), 1,
341 $ WORK( WBEGIN ), 1 )
342
343 * We store in W the eigenvalue approximations w.r.t. the original
344 * matrix T.
345 DO 30 I=1,IM
346 W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
347 30 CONTINUE
348
349
350 * NDEPTH is the current depth of the representation tree
351 NDEPTH = 0
352 * PARITY is either 1 or 0
353 PARITY = 1
354 * NCLUS is the number of clusters for the next level of the
355 * representation tree, we start with NCLUS = 1 for the root
356 NCLUS = 1
357 IWORK( IINDC1+1 ) = 1
358 IWORK( IINDC1+2 ) = IM
359
360 * IDONE is the number of eigenvectors already computed in the current
361 * block
362 IDONE = 0
363 * loop while( IDONE.LT.IM )
364 * generate the representation tree for the current block and
365 * compute the eigenvectors
366 40 CONTINUE
367 IF( IDONE.LT.IM ) THEN
368 * This is a crude protection against infinitely deep trees
369 IF( NDEPTH.GT.M ) THEN
370 INFO = -2
371 RETURN
372 ENDIF
373 * breadth first processing of the current level of the representation
374 * tree: OLDNCL = number of clusters on current level
375 OLDNCL = NCLUS
376 * reset NCLUS to count the number of child clusters
377 NCLUS = 0
378 *
379 PARITY = 1 - PARITY
380 IF( PARITY.EQ.0 ) THEN
381 OLDCLS = IINDC1
382 NEWCLS = IINDC2
383 ELSE
384 OLDCLS = IINDC2
385 NEWCLS = IINDC1
386 END IF
387 * Process the clusters on the current level
388 DO 150 I = 1, OLDNCL
389 J = OLDCLS + 2*I
390 * OLDFST, OLDLST = first, last index of current cluster.
391 * cluster indices start with 1 and are relative
392 * to WBEGIN when accessing W, WGAP, WERR, Z
393 OLDFST = IWORK( J-1 )
394 OLDLST = IWORK( J )
395 IF( NDEPTH.GT.0 ) THEN
396 * Retrieve relatively robust representation (RRR) of cluster
397 * that has been computed at the previous level
398 * The RRR is stored in Z and overwritten once the eigenvectors
399 * have been computed or when the cluster is refined
400
401 IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
402 * Get representation from location of the leftmost evalue
403 * of the cluster
404 J = WBEGIN + OLDFST - 1
405 ELSE
406 IF(WBEGIN+OLDFST-1.LT.DOL) THEN
407 * Get representation from the left end of Z array
408 J = DOL - 1
409 ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
410 * Get representation from the right end of Z array
411 J = DOU
412 ELSE
413 J = WBEGIN + OLDFST - 1
414 ENDIF
415 ENDIF
416 DO 45 K = 1, IN - 1
417 D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
418 $ J ) )
419 L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
420 $ J+1 ) )
421 45 CONTINUE
422 D( IEND ) = DBLE( Z( IEND, J ) )
423 SIGMA = DBLE( Z( IEND, J+1 ) )
424
425 * Set the corresponding entries in Z to zero
426 CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
427 $ Z( IBEGIN, J), LDZ )
428 END IF
429
430 * Compute DL and DLL of current RRR
431 DO 50 J = IBEGIN, IEND-1
432 TMP = D( J )*L( J )
433 WORK( INDLD-1+J ) = TMP
434 WORK( INDLLD-1+J ) = TMP*L( J )
435 50 CONTINUE
436
437 IF( NDEPTH.GT.0 ) THEN
438 * P and Q are index of the first and last eigenvalue to compute
439 * within the current block
440 P = INDEXW( WBEGIN-1+OLDFST )
441 Q = INDEXW( WBEGIN-1+OLDLST )
442 * Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
443 * through the Q-OFFSET elements of these arrays are to be used.
444 * OFFSET = P-OLDFST
445 OFFSET = INDEXW( WBEGIN ) - 1
446 * perform limited bisection (if necessary) to get approximate
447 * eigenvalues to the precision needed.
448 CALL DLARRB( IN, D( IBEGIN ),
449 $ WORK(INDLLD+IBEGIN-1),
450 $ P, Q, RTOL1, RTOL2, OFFSET,
451 $ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
452 $ WORK( INDWRK ), IWORK( IINDWK ),
453 $ PIVMIN, SPDIAM, IN, IINFO )
454 IF( IINFO.NE.0 ) THEN
455 INFO = -1
456 RETURN
457 ENDIF
458 * We also recompute the extremal gaps. W holds all eigenvalues
459 * of the unshifted matrix and must be used for computation
460 * of WGAP, the entries of WORK might stem from RRRs with
461 * different shifts. The gaps from WBEGIN-1+OLDFST to
462 * WBEGIN-1+OLDLST are correctly computed in DLARRB.
463 * However, we only allow the gaps to become greater since
464 * this is what should happen when we decrease WERR
465 IF( OLDFST.GT.1) THEN
466 WGAP( WBEGIN+OLDFST-2 ) =
467 $ MAX(WGAP(WBEGIN+OLDFST-2),
468 $ W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
469 $ - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
470 ENDIF
471 IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
472 WGAP( WBEGIN+OLDLST-1 ) =
473 $ MAX(WGAP(WBEGIN+OLDLST-1),
474 $ W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
475 $ - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
476 ENDIF
477 * Each time the eigenvalues in WORK get refined, we store
478 * the newly found approximation with all shifts applied in W
479 DO 53 J=OLDFST,OLDLST
480 W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
481 53 CONTINUE
482 END IF
483
484 * Process the current node.
485 NEWFST = OLDFST
486 DO 140 J = OLDFST, OLDLST
487 IF( J.EQ.OLDLST ) THEN
488 * we are at the right end of the cluster, this is also the
489 * boundary of the child cluster
490 NEWLST = J
491 ELSE IF ( WGAP( WBEGIN + J -1).GE.
492 $ MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
493 * the right relative gap is big enough, the child cluster
494 * (NEWFST,..,NEWLST) is well separated from the following
495 NEWLST = J
496 ELSE
497 * inside a child cluster, the relative gap is not
498 * big enough.
499 GOTO 140
500 END IF
501
502 * Compute size of child cluster found
503 NEWSIZ = NEWLST - NEWFST + 1
504
505 * NEWFTT is the place in Z where the new RRR or the computed
506 * eigenvector is to be stored
507 IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
508 * Store representation at location of the leftmost evalue
509 * of the cluster
510 NEWFTT = WBEGIN + NEWFST - 1
511 ELSE
512 IF(WBEGIN+NEWFST-1.LT.DOL) THEN
513 * Store representation at the left end of Z array
514 NEWFTT = DOL - 1
515 ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
516 * Store representation at the right end of Z array
517 NEWFTT = DOU
518 ELSE
519 NEWFTT = WBEGIN + NEWFST - 1
520 ENDIF
521 ENDIF
522
523 IF( NEWSIZ.GT.1) THEN
524 *
525 * Current child is not a singleton but a cluster.
526 * Compute and store new representation of child.
527 *
528 *
529 * Compute left and right cluster gap.
530 *
531 * LGAP and RGAP are not computed from WORK because
532 * the eigenvalue approximations may stem from RRRs
533 * different shifts. However, W hold all eigenvalues
534 * of the unshifted matrix. Still, the entries in WGAP
535 * have to be computed from WORK since the entries
536 * in W might be of the same order so that gaps are not
537 * exhibited correctly for very close eigenvalues.
538 IF( NEWFST.EQ.1 ) THEN
539 LGAP = MAX( ZERO,
540 $ W(WBEGIN)-WERR(WBEGIN) - VL )
541 ELSE
542 LGAP = WGAP( WBEGIN+NEWFST-2 )
543 ENDIF
544 RGAP = WGAP( WBEGIN+NEWLST-1 )
545 *
546 * Compute left- and rightmost eigenvalue of child
547 * to high precision in order to shift as close
548 * as possible and obtain as large relative gaps
549 * as possible
550 *
551 DO 55 K =1,2
552 IF(K.EQ.1) THEN
553 P = INDEXW( WBEGIN-1+NEWFST )
554 ELSE
555 P = INDEXW( WBEGIN-1+NEWLST )
556 ENDIF
557 OFFSET = INDEXW( WBEGIN ) - 1
558 CALL DLARRB( IN, D(IBEGIN),
559 $ WORK( INDLLD+IBEGIN-1 ),P,P,
560 $ RQTOL, RQTOL, OFFSET,
561 $ WORK(WBEGIN),WGAP(WBEGIN),
562 $ WERR(WBEGIN),WORK( INDWRK ),
563 $ IWORK( IINDWK ), PIVMIN, SPDIAM,
564 $ IN, IINFO )
565 55 CONTINUE
566 *
567 IF((WBEGIN+NEWLST-1.LT.DOL).OR.
568 $ (WBEGIN+NEWFST-1.GT.DOU)) THEN
569 * if the cluster contains no desired eigenvalues
570 * skip the computation of that branch of the rep. tree
571 *
572 * We could skip before the refinement of the extremal
573 * eigenvalues of the child, but then the representation
574 * tree could be different from the one when nothing is
575 * skipped. For this reason we skip at this place.
576 IDONE = IDONE + NEWLST - NEWFST + 1
577 GOTO 139
578 ENDIF
579 *
580 * Compute RRR of child cluster.
581 * Note that the new RRR is stored in Z
582 *
583 * DLARRF needs LWORK = 2*N
584 CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
585 $ WORK(INDLD+IBEGIN-1),
586 $ NEWFST, NEWLST, WORK(WBEGIN),
587 $ WGAP(WBEGIN), WERR(WBEGIN),
588 $ SPDIAM, LGAP, RGAP, PIVMIN, TAU,
589 $ WORK( INDIN1 ), WORK( INDIN2 ),
590 $ WORK( INDWRK ), IINFO )
591 * In the complex case, DLARRF cannot write
592 * the new RRR directly into Z and needs an intermediate
593 * workspace
594 DO 56 K = 1, IN-1
595 Z( IBEGIN+K-1, NEWFTT ) =
596 $ DCMPLX( WORK( INDIN1+K-1 ), ZERO )
597 Z( IBEGIN+K-1, NEWFTT+1 ) =
598 $ DCMPLX( WORK( INDIN2+K-1 ), ZERO )
599 56 CONTINUE
600 Z( IEND, NEWFTT ) =
601 $ DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
602 IF( IINFO.EQ.0 ) THEN
603 * a new RRR for the cluster was found by DLARRF
604 * update shift and store it
605 SSIGMA = SIGMA + TAU
606 Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
607 * WORK() are the midpoints and WERR() the semi-width
608 * Note that the entries in W are unchanged.
609 DO 116 K = NEWFST, NEWLST
610 FUDGE =
611 $ THREE*EPS*ABS(WORK(WBEGIN+K-1))
612 WORK( WBEGIN + K - 1 ) =
613 $ WORK( WBEGIN + K - 1) - TAU
614 FUDGE = FUDGE +
615 $ FOUR*EPS*ABS(WORK(WBEGIN+K-1))
616 * Fudge errors
617 WERR( WBEGIN + K - 1 ) =
618 $ WERR( WBEGIN + K - 1 ) + FUDGE
619 * Gaps are not fudged. Provided that WERR is small
620 * when eigenvalues are close, a zero gap indicates
621 * that a new representation is needed for resolving
622 * the cluster. A fudge could lead to a wrong decision
623 * of judging eigenvalues 'separated' which in
624 * reality are not. This could have a negative impact
625 * on the orthogonality of the computed eigenvectors.
626 116 CONTINUE
627
628 NCLUS = NCLUS + 1
629 K = NEWCLS + 2*NCLUS
630 IWORK( K-1 ) = NEWFST
631 IWORK( K ) = NEWLST
632 ELSE
633 INFO = -2
634 RETURN
635 ENDIF
636 ELSE
637 *
638 * Compute eigenvector of singleton
639 *
640 ITER = 0
641 *
642 TOL = FOUR * LOG(DBLE(IN)) * EPS
643 *
644 K = NEWFST
645 WINDEX = WBEGIN + K - 1
646 WINDMN = MAX(WINDEX - 1,1)
647 WINDPL = MIN(WINDEX + 1,M)
648 LAMBDA = WORK( WINDEX )
649 DONE = DONE + 1
650 * Check if eigenvector computation is to be skipped
651 IF((WINDEX.LT.DOL).OR.
652 $ (WINDEX.GT.DOU)) THEN
653 ESKIP = .TRUE.
654 GOTO 125
655 ELSE
656 ESKIP = .FALSE.
657 ENDIF
658 LEFT = WORK( WINDEX ) - WERR( WINDEX )
659 RIGHT = WORK( WINDEX ) + WERR( WINDEX )
660 INDEIG = INDEXW( WINDEX )
661 * Note that since we compute the eigenpairs for a child,
662 * all eigenvalue approximations are w.r.t the same shift.
663 * In this case, the entries in WORK should be used for
664 * computing the gaps since they exhibit even very small
665 * differences in the eigenvalues, as opposed to the
666 * entries in W which might "look" the same.
667
668 IF( K .EQ. 1) THEN
669 * In the case RANGE='I' and with not much initial
670 * accuracy in LAMBDA and VL, the formula
671 * LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
672 * can lead to an overestimation of the left gap and
673 * thus to inadequately early RQI 'convergence'.
674 * Prevent this by forcing a small left gap.
675 LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
676 ELSE
677 LGAP = WGAP(WINDMN)
678 ENDIF
679 IF( K .EQ. IM) THEN
680 * In the case RANGE='I' and with not much initial
681 * accuracy in LAMBDA and VU, the formula
682 * can lead to an overestimation of the right gap and
683 * thus to inadequately early RQI 'convergence'.
684 * Prevent this by forcing a small right gap.
685 RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
686 ELSE
687 RGAP = WGAP(WINDEX)
688 ENDIF
689 GAP = MIN( LGAP, RGAP )
690 IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
691 * The eigenvector support can become wrong
692 * because significant entries could be cut off due to a
693 * large GAPTOL parameter in LAR1V. Prevent this.
694 GAPTOL = ZERO
695 ELSE
696 GAPTOL = GAP * EPS
697 ENDIF
698 ISUPMN = IN
699 ISUPMX = 1
700 * Update WGAP so that it holds the minimum gap
701 * to the left or the right. This is crucial in the
702 * case where bisection is used to ensure that the
703 * eigenvalue is refined up to the required precision.
704 * The correct value is restored afterwards.
705 SAVGAP = WGAP(WINDEX)
706 WGAP(WINDEX) = GAP
707 * We want to use the Rayleigh Quotient Correction
708 * as often as possible since it converges quadratically
709 * when we are close enough to the desired eigenvalue.
710 * However, the Rayleigh Quotient can have the wrong sign
711 * and lead us away from the desired eigenvalue. In this
712 * case, the best we can do is to use bisection.
713 USEDBS = .FALSE.
714 USEDRQ = .FALSE.
715 * Bisection is initially turned off unless it is forced
716 NEEDBS = .NOT.TRYRQC
717 120 CONTINUE
718 * Check if bisection should be used to refine eigenvalue
719 IF(NEEDBS) THEN
720 * Take the bisection as new iterate
721 USEDBS = .TRUE.
722 ITMP1 = IWORK( IINDR+WINDEX )
723 OFFSET = INDEXW( WBEGIN ) - 1
724 CALL DLARRB( IN, D(IBEGIN),
725 $ WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
726 $ ZERO, TWO*EPS, OFFSET,
727 $ WORK(WBEGIN),WGAP(WBEGIN),
728 $ WERR(WBEGIN),WORK( INDWRK ),
729 $ IWORK( IINDWK ), PIVMIN, SPDIAM,
730 $ ITMP1, IINFO )
731 IF( IINFO.NE.0 ) THEN
732 INFO = -3
733 RETURN
734 ENDIF
735 LAMBDA = WORK( WINDEX )
736 * Reset twist index from inaccurate LAMBDA to
737 * force computation of true MINGMA
738 IWORK( IINDR+WINDEX ) = 0
739 ENDIF
740 * Given LAMBDA, compute the eigenvector.
741 CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
742 $ L( IBEGIN ), WORK(INDLD+IBEGIN-1),
743 $ WORK(INDLLD+IBEGIN-1),
744 $ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
745 $ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
746 $ IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
747 $ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
748 IF(ITER .EQ. 0) THEN
749 BSTRES = RESID
750 BSTW = LAMBDA
751 ELSEIF(RESID.LT.BSTRES) THEN
752 BSTRES = RESID
753 BSTW = LAMBDA
754 ENDIF
755 ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
756 ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
757 ITER = ITER + 1
758
759 * sin alpha <= |resid|/gap
760 * Note that both the residual and the gap are
761 * proportional to the matrix, so ||T|| doesn't play
762 * a role in the quotient
763
764 *
765 * Convergence test for Rayleigh-Quotient iteration
766 * (omitted when Bisection has been used)
767 *
768 IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
769 $ RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
770 $ THEN
771 * We need to check that the RQCORR update doesn't
772 * move the eigenvalue away from the desired one and
773 * towards a neighbor. -> protection with bisection
774 IF(INDEIG.LE.NEGCNT) THEN
775 * The wanted eigenvalue lies to the left
776 SGNDEF = -ONE
777 ELSE
778 * The wanted eigenvalue lies to the right
779 SGNDEF = ONE
780 ENDIF
781 * We only use the RQCORR if it improves the
782 * the iterate reasonably.
783 IF( ( RQCORR*SGNDEF.GE.ZERO )
784 $ .AND.( LAMBDA + RQCORR.LE. RIGHT)
785 $ .AND.( LAMBDA + RQCORR.GE. LEFT)
786 $ ) THEN
787 USEDRQ = .TRUE.
788 * Store new midpoint of bisection interval in WORK
789 IF(SGNDEF.EQ.ONE) THEN
790 * The current LAMBDA is on the left of the true
791 * eigenvalue
792 LEFT = LAMBDA
793 * We prefer to assume that the error estimate
794 * is correct. We could make the interval not
795 * as a bracket but to be modified if the RQCORR
796 * chooses to. In this case, the RIGHT side should
797 * be modified as follows:
798 * RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
799 ELSE
800 * The current LAMBDA is on the right of the true
801 * eigenvalue
802 RIGHT = LAMBDA
803 * See comment about assuming the error estimate is
804 * correct above.
805 * LEFT = MIN(LEFT, LAMBDA + RQCORR)
806 ENDIF
807 WORK( WINDEX ) =
808 $ HALF * (RIGHT + LEFT)
809 * Take RQCORR since it has the correct sign and
810 * improves the iterate reasonably
811 LAMBDA = LAMBDA + RQCORR
812 * Update width of error interval
813 WERR( WINDEX ) =
814 $ HALF * (RIGHT-LEFT)
815 ELSE
816 NEEDBS = .TRUE.
817 ENDIF
818 IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
819 * The eigenvalue is computed to bisection accuracy
820 * compute eigenvector and stop
821 USEDBS = .TRUE.
822 GOTO 120
823 ELSEIF( ITER.LT.MAXITR ) THEN
824 GOTO 120
825 ELSEIF( ITER.EQ.MAXITR ) THEN
826 NEEDBS = .TRUE.
827 GOTO 120
828 ELSE
829 INFO = 5
830 RETURN
831 END IF
832 ELSE
833 STP2II = .FALSE.
834 IF(USEDRQ .AND. USEDBS .AND.
835 $ BSTRES.LE.RESID) THEN
836 LAMBDA = BSTW
837 STP2II = .TRUE.
838 ENDIF
839 IF (STP2II) THEN
840 * improve error angle by second step
841 CALL ZLAR1V( IN, 1, IN, LAMBDA,
842 $ D( IBEGIN ), L( IBEGIN ),
843 $ WORK(INDLD+IBEGIN-1),
844 $ WORK(INDLLD+IBEGIN-1),
845 $ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
846 $ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
847 $ IWORK( IINDR+WINDEX ),
848 $ ISUPPZ( 2*WINDEX-1 ),
849 $ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
850 ENDIF
851 WORK( WINDEX ) = LAMBDA
852 END IF
853 *
854 * Compute FP-vector support w.r.t. whole matrix
855 *
856 ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
857 ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
858 ZFROM = ISUPPZ( 2*WINDEX-1 )
859 ZTO = ISUPPZ( 2*WINDEX )
860 ISUPMN = ISUPMN + OLDIEN
861 ISUPMX = ISUPMX + OLDIEN
862 * Ensure vector is ok if support in the RQI has changed
863 IF(ISUPMN.LT.ZFROM) THEN
864 DO 122 II = ISUPMN,ZFROM-1
865 Z( II, WINDEX ) = ZERO
866 122 CONTINUE
867 ENDIF
868 IF(ISUPMX.GT.ZTO) THEN
869 DO 123 II = ZTO+1,ISUPMX
870 Z( II, WINDEX ) = ZERO
871 123 CONTINUE
872 ENDIF
873 CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
874 $ Z( ZFROM, WINDEX ), 1 )
875 125 CONTINUE
876 * Update W
877 W( WINDEX ) = LAMBDA+SIGMA
878 * Recompute the gaps on the left and right
879 * But only allow them to become larger and not
880 * smaller (which can only happen through "bad"
881 * cancellation and doesn't reflect the theory
882 * where the initial gaps are underestimated due
883 * to WERR being too crude.)
884 IF(.NOT.ESKIP) THEN
885 IF( K.GT.1) THEN
886 WGAP( WINDMN ) = MAX( WGAP(WINDMN),
887 $ W(WINDEX)-WERR(WINDEX)
888 $ - W(WINDMN)-WERR(WINDMN) )
889 ENDIF
890 IF( WINDEX.LT.WEND ) THEN
891 WGAP( WINDEX ) = MAX( SAVGAP,
892 $ W( WINDPL )-WERR( WINDPL )
893 $ - W( WINDEX )-WERR( WINDEX) )
894 ENDIF
895 ENDIF
896 IDONE = IDONE + 1
897 ENDIF
898 * here ends the code for the current child
899 *
900 139 CONTINUE
901 * Proceed to any remaining child nodes
902 NEWFST = J + 1
903 140 CONTINUE
904 150 CONTINUE
905 NDEPTH = NDEPTH + 1
906 GO TO 40
907 END IF
908 IBEGIN = IEND + 1
909 WBEGIN = WEND + 1
910 170 CONTINUE
911 *
912
913 RETURN
914 *
915 * End of ZLARRV
916 *
917 END
2 $ ISPLIT, M, DOL, DOU, MINRGP,
3 $ RTOL1, RTOL2, W, WERR, WGAP,
4 $ IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
5 $ WORK, IWORK, INFO )
6 *
7 * -- LAPACK auxiliary routine (version 3.3.1) --
8 * -- LAPACK is a software package provided by Univ. of Tennessee, --
9 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
10 * -- April 2011 --
11 *
12 * .. Scalar Arguments ..
13 INTEGER DOL, DOU, INFO, LDZ, M, N
14 DOUBLE PRECISION MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
15 * ..
16 * .. Array Arguments ..
17 INTEGER IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
18 $ ISUPPZ( * ), IWORK( * )
19 DOUBLE PRECISION D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
20 $ WGAP( * ), WORK( * )
21 COMPLEX*16 Z( LDZ, * )
22 * ..
23 *
24 * Purpose
25 * =======
26 *
27 * ZLARRV computes the eigenvectors of the tridiagonal matrix
28 * T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
29 * The input eigenvalues should have been computed by DLARRE.
30 *
31 * Arguments
32 * =========
33 *
34 * N (input) INTEGER
35 * The order of the matrix. N >= 0.
36 *
37 * VL (input) DOUBLE PRECISION
38 * VU (input) DOUBLE PRECISION
39 * Lower and upper bounds of the interval that contains the desired
40 * eigenvalues. VL < VU. Needed to compute gaps on the left or right
41 * end of the extremal eigenvalues in the desired RANGE.
42 *
43 * D (input/output) DOUBLE PRECISION array, dimension (N)
44 * On entry, the N diagonal elements of the diagonal matrix D.
45 * On exit, D may be overwritten.
46 *
47 * L (input/output) DOUBLE PRECISION array, dimension (N)
48 * On entry, the (N-1) subdiagonal elements of the unit
49 * bidiagonal matrix L are in elements 1 to N-1 of L
50 * (if the matrix is not splitted.) At the end of each block
51 * is stored the corresponding shift as given by DLARRE.
52 * On exit, L is overwritten.
53 *
54 * PIVMIN (in) DOUBLE PRECISION
55 * The minimum pivot allowed in the Sturm sequence.
56 *
57 * ISPLIT (input) INTEGER array, dimension (N)
58 * The splitting points, at which T breaks up into blocks.
59 * The first block consists of rows/columns 1 to
60 * ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
61 * through ISPLIT( 2 ), etc.
62 *
63 * M (input) INTEGER
64 * The total number of input eigenvalues. 0 <= M <= N.
65 *
66 * DOL (input) INTEGER
67 * DOU (input) INTEGER
68 * If the user wants to compute only selected eigenvectors from all
69 * the eigenvalues supplied, he can specify an index range DOL:DOU.
70 * Or else the setting DOL=1, DOU=M should be applied.
71 * Note that DOL and DOU refer to the order in which the eigenvalues
72 * are stored in W.
73 * If the user wants to compute only selected eigenpairs, then
74 * the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
75 * computed eigenvectors. All other columns of Z are set to zero.
76 *
77 * MINRGP (input) DOUBLE PRECISION
78 *
79 * RTOL1 (input) DOUBLE PRECISION
80 * RTOL2 (input) DOUBLE PRECISION
81 * Parameters for bisection.
82 * An interval [LEFT,RIGHT] has converged if
83 * RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
84 *
85 * W (input/output) DOUBLE PRECISION array, dimension (N)
86 * The first M elements of W contain the APPROXIMATE eigenvalues for
87 * which eigenvectors are to be computed. The eigenvalues
88 * should be grouped by split-off block and ordered from
89 * smallest to largest within the block ( The output array
90 * W from DLARRE is expected here ). Furthermore, they are with
91 * respect to the shift of the corresponding root representation
92 * for their block. On exit, W holds the eigenvalues of the
93 * UNshifted matrix.
94 *
95 * WERR (input/output) DOUBLE PRECISION array, dimension (N)
96 * The first M elements contain the semiwidth of the uncertainty
97 * interval of the corresponding eigenvalue in W
98 *
99 * WGAP (input/output) DOUBLE PRECISION array, dimension (N)
100 * The separation from the right neighbor eigenvalue in W.
101 *
102 * IBLOCK (input) INTEGER array, dimension (N)
103 * The indices of the blocks (submatrices) associated with the
104 * corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
105 * W(i) belongs to the first block from the top, =2 if W(i)
106 * belongs to the second block, etc.
107 *
108 * INDEXW (input) INTEGER array, dimension (N)
109 * The indices of the eigenvalues within each block (submatrix);
110 * for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
111 * i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
112 *
113 * GERS (input) DOUBLE PRECISION array, dimension (2*N)
114 * The N Gerschgorin intervals (the i-th Gerschgorin interval
115 * is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
116 * be computed from the original UNshifted matrix.
117 *
118 * Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M) )
119 * If INFO = 0, the first M columns of Z contain the
120 * orthonormal eigenvectors of the matrix T
121 * corresponding to the input eigenvalues, with the i-th
122 * column of Z holding the eigenvector associated with W(i).
123 * Note: the user must ensure that at least max(1,M) columns are
124 * supplied in the array Z.
125 *
126 * LDZ (input) INTEGER
127 * The leading dimension of the array Z. LDZ >= 1, and if
128 * JOBZ = 'V', LDZ >= max(1,N).
129 *
130 * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
131 * The support of the eigenvectors in Z, i.e., the indices
132 * indicating the nonzero elements in Z. The I-th eigenvector
133 * is nonzero only in elements ISUPPZ( 2*I-1 ) through
134 * ISUPPZ( 2*I ).
135 *
136 * WORK (workspace) DOUBLE PRECISION array, dimension (12*N)
137 *
138 * IWORK (workspace) INTEGER array, dimension (7*N)
139 *
140 * INFO (output) INTEGER
141 * = 0: successful exit
142 *
143 * > 0: A problem occured in ZLARRV.
144 * < 0: One of the called subroutines signaled an internal problem.
145 * Needs inspection of the corresponding parameter IINFO
146 * for further information.
147 *
148 * =-1: Problem in DLARRB when refining a child's eigenvalues.
149 * =-2: Problem in DLARRF when computing the RRR of a child.
150 * When a child is inside a tight cluster, it can be difficult
151 * to find an RRR. A partial remedy from the user's point of
152 * view is to make the parameter MINRGP smaller and recompile.
153 * However, as the orthogonality of the computed vectors is
154 * proportional to 1/MINRGP, the user should be aware that
155 * he might be trading in precision when he decreases MINRGP.
156 * =-3: Problem in DLARRB when refining a single eigenvalue
157 * after the Rayleigh correction was rejected.
158 * = 5: The Rayleigh Quotient Iteration failed to converge to
159 * full accuracy in MAXITR steps.
160 *
161 * Further Details
162 * ===============
163 *
164 * Based on contributions by
165 * Beresford Parlett, University of California, Berkeley, USA
166 * Jim Demmel, University of California, Berkeley, USA
167 * Inderjit Dhillon, University of Texas, Austin, USA
168 * Osni Marques, LBNL/NERSC, USA
169 * Christof Voemel, University of California, Berkeley, USA
170 *
171 * =====================================================================
172 *
173 * .. Parameters ..
174 INTEGER MAXITR
175 PARAMETER ( MAXITR = 10 )
176 COMPLEX*16 CZERO
177 PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ) )
178 DOUBLE PRECISION ZERO, ONE, TWO, THREE, FOUR, HALF
179 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0,
180 $ TWO = 2.0D0, THREE = 3.0D0,
181 $ FOUR = 4.0D0, HALF = 0.5D0)
182 * ..
183 * .. Local Scalars ..
184 LOGICAL ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
185 INTEGER DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
186 $ IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
187 $ INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
188 $ ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
189 $ NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
190 $ NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
191 $ OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
192 $ WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
193 $ ZUSEDW
194 INTEGER INDIN1, INDIN2
195 DOUBLE PRECISION BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
196 $ LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
197 $ RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
198 $ SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
199 * ..
200 * .. External Functions ..
201 DOUBLE PRECISION DLAMCH
202 EXTERNAL DLAMCH
203 * ..
204 * .. External Subroutines ..
205 EXTERNAL DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
206 $ ZLASET
207 * ..
208 * .. Intrinsic Functions ..
209 INTRINSIC ABS, DBLE, MAX, MIN
210 INTRINSIC DCMPLX
211 * ..
212 * .. Executable Statements ..
213 * ..
214
215 * The first N entries of WORK are reserved for the eigenvalues
216 INDLD = N+1
217 INDLLD= 2*N+1
218 INDIN1 = 3*N + 1
219 INDIN2 = 4*N + 1
220 INDWRK = 5*N + 1
221 MINWSIZE = 12 * N
222
223 DO 5 I= 1,MINWSIZE
224 WORK( I ) = ZERO
225 5 CONTINUE
226
227 * IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
228 * factorization used to compute the FP vector
229 IINDR = 0
230 * IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
231 * layer and the one above.
232 IINDC1 = N
233 IINDC2 = 2*N
234 IINDWK = 3*N + 1
235
236 MINIWSIZE = 7 * N
237 DO 10 I= 1,MINIWSIZE
238 IWORK( I ) = 0
239 10 CONTINUE
240
241 ZUSEDL = 1
242 IF(DOL.GT.1) THEN
243 * Set lower bound for use of Z
244 ZUSEDL = DOL-1
245 ENDIF
246 ZUSEDU = M
247 IF(DOU.LT.M) THEN
248 * Set lower bound for use of Z
249 ZUSEDU = DOU+1
250 ENDIF
251 * The width of the part of Z that is used
252 ZUSEDW = ZUSEDU - ZUSEDL + 1
253
254
255 CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
256 $ Z(1,ZUSEDL), LDZ )
257
258 EPS = DLAMCH( 'Precision' )
259 RQTOL = TWO * EPS
260 *
261 * Set expert flags for standard code.
262 TRYRQC = .TRUE.
263
264 IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
265 ELSE
266 * Only selected eigenpairs are computed. Since the other evalues
267 * are not refined by RQ iteration, bisection has to compute to full
268 * accuracy.
269 RTOL1 = FOUR * EPS
270 RTOL2 = FOUR * EPS
271 ENDIF
272
273 * The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
274 * desired eigenvalues. The support of the nonzero eigenvector
275 * entries is contained in the interval IBEGIN:IEND.
276 * Remark that if k eigenpairs are desired, then the eigenvectors
277 * are stored in k contiguous columns of Z.
278
279 * DONE is the number of eigenvectors already computed
280 DONE = 0
281 IBEGIN = 1
282 WBEGIN = 1
283 DO 170 JBLK = 1, IBLOCK( M )
284 IEND = ISPLIT( JBLK )
285 SIGMA = L( IEND )
286 * Find the eigenvectors of the submatrix indexed IBEGIN
287 * through IEND.
288 WEND = WBEGIN - 1
289 15 CONTINUE
290 IF( WEND.LT.M ) THEN
291 IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
292 WEND = WEND + 1
293 GO TO 15
294 END IF
295 END IF
296 IF( WEND.LT.WBEGIN ) THEN
297 IBEGIN = IEND + 1
298 GO TO 170
299 ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
300 IBEGIN = IEND + 1
301 WBEGIN = WEND + 1
302 GO TO 170
303 END IF
304
305 * Find local spectral diameter of the block
306 GL = GERS( 2*IBEGIN-1 )
307 GU = GERS( 2*IBEGIN )
308 DO 20 I = IBEGIN+1 , IEND
309 GL = MIN( GERS( 2*I-1 ), GL )
310 GU = MAX( GERS( 2*I ), GU )
311 20 CONTINUE
312 SPDIAM = GU - GL
313
314 * OLDIEN is the last index of the previous block
315 OLDIEN = IBEGIN - 1
316 * Calculate the size of the current block
317 IN = IEND - IBEGIN + 1
318 * The number of eigenvalues in the current block
319 IM = WEND - WBEGIN + 1
320
321 * This is for a 1x1 block
322 IF( IBEGIN.EQ.IEND ) THEN
323 DONE = DONE+1
324 Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
325 ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
326 ISUPPZ( 2*WBEGIN ) = IBEGIN
327 W( WBEGIN ) = W( WBEGIN ) + SIGMA
328 WORK( WBEGIN ) = W( WBEGIN )
329 IBEGIN = IEND + 1
330 WBEGIN = WBEGIN + 1
331 GO TO 170
332 END IF
333
334 * The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
335 * Note that these can be approximations, in this case, the corresp.
336 * entries of WERR give the size of the uncertainty interval.
337 * The eigenvalue approximations will be refined when necessary as
338 * high relative accuracy is required for the computation of the
339 * corresponding eigenvectors.
340 CALL DCOPY( IM, W( WBEGIN ), 1,
341 $ WORK( WBEGIN ), 1 )
342
343 * We store in W the eigenvalue approximations w.r.t. the original
344 * matrix T.
345 DO 30 I=1,IM
346 W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
347 30 CONTINUE
348
349
350 * NDEPTH is the current depth of the representation tree
351 NDEPTH = 0
352 * PARITY is either 1 or 0
353 PARITY = 1
354 * NCLUS is the number of clusters for the next level of the
355 * representation tree, we start with NCLUS = 1 for the root
356 NCLUS = 1
357 IWORK( IINDC1+1 ) = 1
358 IWORK( IINDC1+2 ) = IM
359
360 * IDONE is the number of eigenvectors already computed in the current
361 * block
362 IDONE = 0
363 * loop while( IDONE.LT.IM )
364 * generate the representation tree for the current block and
365 * compute the eigenvectors
366 40 CONTINUE
367 IF( IDONE.LT.IM ) THEN
368 * This is a crude protection against infinitely deep trees
369 IF( NDEPTH.GT.M ) THEN
370 INFO = -2
371 RETURN
372 ENDIF
373 * breadth first processing of the current level of the representation
374 * tree: OLDNCL = number of clusters on current level
375 OLDNCL = NCLUS
376 * reset NCLUS to count the number of child clusters
377 NCLUS = 0
378 *
379 PARITY = 1 - PARITY
380 IF( PARITY.EQ.0 ) THEN
381 OLDCLS = IINDC1
382 NEWCLS = IINDC2
383 ELSE
384 OLDCLS = IINDC2
385 NEWCLS = IINDC1
386 END IF
387 * Process the clusters on the current level
388 DO 150 I = 1, OLDNCL
389 J = OLDCLS + 2*I
390 * OLDFST, OLDLST = first, last index of current cluster.
391 * cluster indices start with 1 and are relative
392 * to WBEGIN when accessing W, WGAP, WERR, Z
393 OLDFST = IWORK( J-1 )
394 OLDLST = IWORK( J )
395 IF( NDEPTH.GT.0 ) THEN
396 * Retrieve relatively robust representation (RRR) of cluster
397 * that has been computed at the previous level
398 * The RRR is stored in Z and overwritten once the eigenvectors
399 * have been computed or when the cluster is refined
400
401 IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
402 * Get representation from location of the leftmost evalue
403 * of the cluster
404 J = WBEGIN + OLDFST - 1
405 ELSE
406 IF(WBEGIN+OLDFST-1.LT.DOL) THEN
407 * Get representation from the left end of Z array
408 J = DOL - 1
409 ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
410 * Get representation from the right end of Z array
411 J = DOU
412 ELSE
413 J = WBEGIN + OLDFST - 1
414 ENDIF
415 ENDIF
416 DO 45 K = 1, IN - 1
417 D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
418 $ J ) )
419 L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
420 $ J+1 ) )
421 45 CONTINUE
422 D( IEND ) = DBLE( Z( IEND, J ) )
423 SIGMA = DBLE( Z( IEND, J+1 ) )
424
425 * Set the corresponding entries in Z to zero
426 CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
427 $ Z( IBEGIN, J), LDZ )
428 END IF
429
430 * Compute DL and DLL of current RRR
431 DO 50 J = IBEGIN, IEND-1
432 TMP = D( J )*L( J )
433 WORK( INDLD-1+J ) = TMP
434 WORK( INDLLD-1+J ) = TMP*L( J )
435 50 CONTINUE
436
437 IF( NDEPTH.GT.0 ) THEN
438 * P and Q are index of the first and last eigenvalue to compute
439 * within the current block
440 P = INDEXW( WBEGIN-1+OLDFST )
441 Q = INDEXW( WBEGIN-1+OLDLST )
442 * Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
443 * through the Q-OFFSET elements of these arrays are to be used.
444 * OFFSET = P-OLDFST
445 OFFSET = INDEXW( WBEGIN ) - 1
446 * perform limited bisection (if necessary) to get approximate
447 * eigenvalues to the precision needed.
448 CALL DLARRB( IN, D( IBEGIN ),
449 $ WORK(INDLLD+IBEGIN-1),
450 $ P, Q, RTOL1, RTOL2, OFFSET,
451 $ WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
452 $ WORK( INDWRK ), IWORK( IINDWK ),
453 $ PIVMIN, SPDIAM, IN, IINFO )
454 IF( IINFO.NE.0 ) THEN
455 INFO = -1
456 RETURN
457 ENDIF
458 * We also recompute the extremal gaps. W holds all eigenvalues
459 * of the unshifted matrix and must be used for computation
460 * of WGAP, the entries of WORK might stem from RRRs with
461 * different shifts. The gaps from WBEGIN-1+OLDFST to
462 * WBEGIN-1+OLDLST are correctly computed in DLARRB.
463 * However, we only allow the gaps to become greater since
464 * this is what should happen when we decrease WERR
465 IF( OLDFST.GT.1) THEN
466 WGAP( WBEGIN+OLDFST-2 ) =
467 $ MAX(WGAP(WBEGIN+OLDFST-2),
468 $ W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
469 $ - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
470 ENDIF
471 IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
472 WGAP( WBEGIN+OLDLST-1 ) =
473 $ MAX(WGAP(WBEGIN+OLDLST-1),
474 $ W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
475 $ - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
476 ENDIF
477 * Each time the eigenvalues in WORK get refined, we store
478 * the newly found approximation with all shifts applied in W
479 DO 53 J=OLDFST,OLDLST
480 W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
481 53 CONTINUE
482 END IF
483
484 * Process the current node.
485 NEWFST = OLDFST
486 DO 140 J = OLDFST, OLDLST
487 IF( J.EQ.OLDLST ) THEN
488 * we are at the right end of the cluster, this is also the
489 * boundary of the child cluster
490 NEWLST = J
491 ELSE IF ( WGAP( WBEGIN + J -1).GE.
492 $ MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
493 * the right relative gap is big enough, the child cluster
494 * (NEWFST,..,NEWLST) is well separated from the following
495 NEWLST = J
496 ELSE
497 * inside a child cluster, the relative gap is not
498 * big enough.
499 GOTO 140
500 END IF
501
502 * Compute size of child cluster found
503 NEWSIZ = NEWLST - NEWFST + 1
504
505 * NEWFTT is the place in Z where the new RRR or the computed
506 * eigenvector is to be stored
507 IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
508 * Store representation at location of the leftmost evalue
509 * of the cluster
510 NEWFTT = WBEGIN + NEWFST - 1
511 ELSE
512 IF(WBEGIN+NEWFST-1.LT.DOL) THEN
513 * Store representation at the left end of Z array
514 NEWFTT = DOL - 1
515 ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
516 * Store representation at the right end of Z array
517 NEWFTT = DOU
518 ELSE
519 NEWFTT = WBEGIN + NEWFST - 1
520 ENDIF
521 ENDIF
522
523 IF( NEWSIZ.GT.1) THEN
524 *
525 * Current child is not a singleton but a cluster.
526 * Compute and store new representation of child.
527 *
528 *
529 * Compute left and right cluster gap.
530 *
531 * LGAP and RGAP are not computed from WORK because
532 * the eigenvalue approximations may stem from RRRs
533 * different shifts. However, W hold all eigenvalues
534 * of the unshifted matrix. Still, the entries in WGAP
535 * have to be computed from WORK since the entries
536 * in W might be of the same order so that gaps are not
537 * exhibited correctly for very close eigenvalues.
538 IF( NEWFST.EQ.1 ) THEN
539 LGAP = MAX( ZERO,
540 $ W(WBEGIN)-WERR(WBEGIN) - VL )
541 ELSE
542 LGAP = WGAP( WBEGIN+NEWFST-2 )
543 ENDIF
544 RGAP = WGAP( WBEGIN+NEWLST-1 )
545 *
546 * Compute left- and rightmost eigenvalue of child
547 * to high precision in order to shift as close
548 * as possible and obtain as large relative gaps
549 * as possible
550 *
551 DO 55 K =1,2
552 IF(K.EQ.1) THEN
553 P = INDEXW( WBEGIN-1+NEWFST )
554 ELSE
555 P = INDEXW( WBEGIN-1+NEWLST )
556 ENDIF
557 OFFSET = INDEXW( WBEGIN ) - 1
558 CALL DLARRB( IN, D(IBEGIN),
559 $ WORK( INDLLD+IBEGIN-1 ),P,P,
560 $ RQTOL, RQTOL, OFFSET,
561 $ WORK(WBEGIN),WGAP(WBEGIN),
562 $ WERR(WBEGIN),WORK( INDWRK ),
563 $ IWORK( IINDWK ), PIVMIN, SPDIAM,
564 $ IN, IINFO )
565 55 CONTINUE
566 *
567 IF((WBEGIN+NEWLST-1.LT.DOL).OR.
568 $ (WBEGIN+NEWFST-1.GT.DOU)) THEN
569 * if the cluster contains no desired eigenvalues
570 * skip the computation of that branch of the rep. tree
571 *
572 * We could skip before the refinement of the extremal
573 * eigenvalues of the child, but then the representation
574 * tree could be different from the one when nothing is
575 * skipped. For this reason we skip at this place.
576 IDONE = IDONE + NEWLST - NEWFST + 1
577 GOTO 139
578 ENDIF
579 *
580 * Compute RRR of child cluster.
581 * Note that the new RRR is stored in Z
582 *
583 * DLARRF needs LWORK = 2*N
584 CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
585 $ WORK(INDLD+IBEGIN-1),
586 $ NEWFST, NEWLST, WORK(WBEGIN),
587 $ WGAP(WBEGIN), WERR(WBEGIN),
588 $ SPDIAM, LGAP, RGAP, PIVMIN, TAU,
589 $ WORK( INDIN1 ), WORK( INDIN2 ),
590 $ WORK( INDWRK ), IINFO )
591 * In the complex case, DLARRF cannot write
592 * the new RRR directly into Z and needs an intermediate
593 * workspace
594 DO 56 K = 1, IN-1
595 Z( IBEGIN+K-1, NEWFTT ) =
596 $ DCMPLX( WORK( INDIN1+K-1 ), ZERO )
597 Z( IBEGIN+K-1, NEWFTT+1 ) =
598 $ DCMPLX( WORK( INDIN2+K-1 ), ZERO )
599 56 CONTINUE
600 Z( IEND, NEWFTT ) =
601 $ DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
602 IF( IINFO.EQ.0 ) THEN
603 * a new RRR for the cluster was found by DLARRF
604 * update shift and store it
605 SSIGMA = SIGMA + TAU
606 Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
607 * WORK() are the midpoints and WERR() the semi-width
608 * Note that the entries in W are unchanged.
609 DO 116 K = NEWFST, NEWLST
610 FUDGE =
611 $ THREE*EPS*ABS(WORK(WBEGIN+K-1))
612 WORK( WBEGIN + K - 1 ) =
613 $ WORK( WBEGIN + K - 1) - TAU
614 FUDGE = FUDGE +
615 $ FOUR*EPS*ABS(WORK(WBEGIN+K-1))
616 * Fudge errors
617 WERR( WBEGIN + K - 1 ) =
618 $ WERR( WBEGIN + K - 1 ) + FUDGE
619 * Gaps are not fudged. Provided that WERR is small
620 * when eigenvalues are close, a zero gap indicates
621 * that a new representation is needed for resolving
622 * the cluster. A fudge could lead to a wrong decision
623 * of judging eigenvalues 'separated' which in
624 * reality are not. This could have a negative impact
625 * on the orthogonality of the computed eigenvectors.
626 116 CONTINUE
627
628 NCLUS = NCLUS + 1
629 K = NEWCLS + 2*NCLUS
630 IWORK( K-1 ) = NEWFST
631 IWORK( K ) = NEWLST
632 ELSE
633 INFO = -2
634 RETURN
635 ENDIF
636 ELSE
637 *
638 * Compute eigenvector of singleton
639 *
640 ITER = 0
641 *
642 TOL = FOUR * LOG(DBLE(IN)) * EPS
643 *
644 K = NEWFST
645 WINDEX = WBEGIN + K - 1
646 WINDMN = MAX(WINDEX - 1,1)
647 WINDPL = MIN(WINDEX + 1,M)
648 LAMBDA = WORK( WINDEX )
649 DONE = DONE + 1
650 * Check if eigenvector computation is to be skipped
651 IF((WINDEX.LT.DOL).OR.
652 $ (WINDEX.GT.DOU)) THEN
653 ESKIP = .TRUE.
654 GOTO 125
655 ELSE
656 ESKIP = .FALSE.
657 ENDIF
658 LEFT = WORK( WINDEX ) - WERR( WINDEX )
659 RIGHT = WORK( WINDEX ) + WERR( WINDEX )
660 INDEIG = INDEXW( WINDEX )
661 * Note that since we compute the eigenpairs for a child,
662 * all eigenvalue approximations are w.r.t the same shift.
663 * In this case, the entries in WORK should be used for
664 * computing the gaps since they exhibit even very small
665 * differences in the eigenvalues, as opposed to the
666 * entries in W which might "look" the same.
667
668 IF( K .EQ. 1) THEN
669 * In the case RANGE='I' and with not much initial
670 * accuracy in LAMBDA and VL, the formula
671 * LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
672 * can lead to an overestimation of the left gap and
673 * thus to inadequately early RQI 'convergence'.
674 * Prevent this by forcing a small left gap.
675 LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
676 ELSE
677 LGAP = WGAP(WINDMN)
678 ENDIF
679 IF( K .EQ. IM) THEN
680 * In the case RANGE='I' and with not much initial
681 * accuracy in LAMBDA and VU, the formula
682 * can lead to an overestimation of the right gap and
683 * thus to inadequately early RQI 'convergence'.
684 * Prevent this by forcing a small right gap.
685 RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
686 ELSE
687 RGAP = WGAP(WINDEX)
688 ENDIF
689 GAP = MIN( LGAP, RGAP )
690 IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
691 * The eigenvector support can become wrong
692 * because significant entries could be cut off due to a
693 * large GAPTOL parameter in LAR1V. Prevent this.
694 GAPTOL = ZERO
695 ELSE
696 GAPTOL = GAP * EPS
697 ENDIF
698 ISUPMN = IN
699 ISUPMX = 1
700 * Update WGAP so that it holds the minimum gap
701 * to the left or the right. This is crucial in the
702 * case where bisection is used to ensure that the
703 * eigenvalue is refined up to the required precision.
704 * The correct value is restored afterwards.
705 SAVGAP = WGAP(WINDEX)
706 WGAP(WINDEX) = GAP
707 * We want to use the Rayleigh Quotient Correction
708 * as often as possible since it converges quadratically
709 * when we are close enough to the desired eigenvalue.
710 * However, the Rayleigh Quotient can have the wrong sign
711 * and lead us away from the desired eigenvalue. In this
712 * case, the best we can do is to use bisection.
713 USEDBS = .FALSE.
714 USEDRQ = .FALSE.
715 * Bisection is initially turned off unless it is forced
716 NEEDBS = .NOT.TRYRQC
717 120 CONTINUE
718 * Check if bisection should be used to refine eigenvalue
719 IF(NEEDBS) THEN
720 * Take the bisection as new iterate
721 USEDBS = .TRUE.
722 ITMP1 = IWORK( IINDR+WINDEX )
723 OFFSET = INDEXW( WBEGIN ) - 1
724 CALL DLARRB( IN, D(IBEGIN),
725 $ WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
726 $ ZERO, TWO*EPS, OFFSET,
727 $ WORK(WBEGIN),WGAP(WBEGIN),
728 $ WERR(WBEGIN),WORK( INDWRK ),
729 $ IWORK( IINDWK ), PIVMIN, SPDIAM,
730 $ ITMP1, IINFO )
731 IF( IINFO.NE.0 ) THEN
732 INFO = -3
733 RETURN
734 ENDIF
735 LAMBDA = WORK( WINDEX )
736 * Reset twist index from inaccurate LAMBDA to
737 * force computation of true MINGMA
738 IWORK( IINDR+WINDEX ) = 0
739 ENDIF
740 * Given LAMBDA, compute the eigenvector.
741 CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
742 $ L( IBEGIN ), WORK(INDLD+IBEGIN-1),
743 $ WORK(INDLLD+IBEGIN-1),
744 $ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
745 $ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
746 $ IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
747 $ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
748 IF(ITER .EQ. 0) THEN
749 BSTRES = RESID
750 BSTW = LAMBDA
751 ELSEIF(RESID.LT.BSTRES) THEN
752 BSTRES = RESID
753 BSTW = LAMBDA
754 ENDIF
755 ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
756 ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
757 ITER = ITER + 1
758
759 * sin alpha <= |resid|/gap
760 * Note that both the residual and the gap are
761 * proportional to the matrix, so ||T|| doesn't play
762 * a role in the quotient
763
764 *
765 * Convergence test for Rayleigh-Quotient iteration
766 * (omitted when Bisection has been used)
767 *
768 IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
769 $ RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
770 $ THEN
771 * We need to check that the RQCORR update doesn't
772 * move the eigenvalue away from the desired one and
773 * towards a neighbor. -> protection with bisection
774 IF(INDEIG.LE.NEGCNT) THEN
775 * The wanted eigenvalue lies to the left
776 SGNDEF = -ONE
777 ELSE
778 * The wanted eigenvalue lies to the right
779 SGNDEF = ONE
780 ENDIF
781 * We only use the RQCORR if it improves the
782 * the iterate reasonably.
783 IF( ( RQCORR*SGNDEF.GE.ZERO )
784 $ .AND.( LAMBDA + RQCORR.LE. RIGHT)
785 $ .AND.( LAMBDA + RQCORR.GE. LEFT)
786 $ ) THEN
787 USEDRQ = .TRUE.
788 * Store new midpoint of bisection interval in WORK
789 IF(SGNDEF.EQ.ONE) THEN
790 * The current LAMBDA is on the left of the true
791 * eigenvalue
792 LEFT = LAMBDA
793 * We prefer to assume that the error estimate
794 * is correct. We could make the interval not
795 * as a bracket but to be modified if the RQCORR
796 * chooses to. In this case, the RIGHT side should
797 * be modified as follows:
798 * RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
799 ELSE
800 * The current LAMBDA is on the right of the true
801 * eigenvalue
802 RIGHT = LAMBDA
803 * See comment about assuming the error estimate is
804 * correct above.
805 * LEFT = MIN(LEFT, LAMBDA + RQCORR)
806 ENDIF
807 WORK( WINDEX ) =
808 $ HALF * (RIGHT + LEFT)
809 * Take RQCORR since it has the correct sign and
810 * improves the iterate reasonably
811 LAMBDA = LAMBDA + RQCORR
812 * Update width of error interval
813 WERR( WINDEX ) =
814 $ HALF * (RIGHT-LEFT)
815 ELSE
816 NEEDBS = .TRUE.
817 ENDIF
818 IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
819 * The eigenvalue is computed to bisection accuracy
820 * compute eigenvector and stop
821 USEDBS = .TRUE.
822 GOTO 120
823 ELSEIF( ITER.LT.MAXITR ) THEN
824 GOTO 120
825 ELSEIF( ITER.EQ.MAXITR ) THEN
826 NEEDBS = .TRUE.
827 GOTO 120
828 ELSE
829 INFO = 5
830 RETURN
831 END IF
832 ELSE
833 STP2II = .FALSE.
834 IF(USEDRQ .AND. USEDBS .AND.
835 $ BSTRES.LE.RESID) THEN
836 LAMBDA = BSTW
837 STP2II = .TRUE.
838 ENDIF
839 IF (STP2II) THEN
840 * improve error angle by second step
841 CALL ZLAR1V( IN, 1, IN, LAMBDA,
842 $ D( IBEGIN ), L( IBEGIN ),
843 $ WORK(INDLD+IBEGIN-1),
844 $ WORK(INDLLD+IBEGIN-1),
845 $ PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
846 $ .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
847 $ IWORK( IINDR+WINDEX ),
848 $ ISUPPZ( 2*WINDEX-1 ),
849 $ NRMINV, RESID, RQCORR, WORK( INDWRK ) )
850 ENDIF
851 WORK( WINDEX ) = LAMBDA
852 END IF
853 *
854 * Compute FP-vector support w.r.t. whole matrix
855 *
856 ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
857 ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
858 ZFROM = ISUPPZ( 2*WINDEX-1 )
859 ZTO = ISUPPZ( 2*WINDEX )
860 ISUPMN = ISUPMN + OLDIEN
861 ISUPMX = ISUPMX + OLDIEN
862 * Ensure vector is ok if support in the RQI has changed
863 IF(ISUPMN.LT.ZFROM) THEN
864 DO 122 II = ISUPMN,ZFROM-1
865 Z( II, WINDEX ) = ZERO
866 122 CONTINUE
867 ENDIF
868 IF(ISUPMX.GT.ZTO) THEN
869 DO 123 II = ZTO+1,ISUPMX
870 Z( II, WINDEX ) = ZERO
871 123 CONTINUE
872 ENDIF
873 CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
874 $ Z( ZFROM, WINDEX ), 1 )
875 125 CONTINUE
876 * Update W
877 W( WINDEX ) = LAMBDA+SIGMA
878 * Recompute the gaps on the left and right
879 * But only allow them to become larger and not
880 * smaller (which can only happen through "bad"
881 * cancellation and doesn't reflect the theory
882 * where the initial gaps are underestimated due
883 * to WERR being too crude.)
884 IF(.NOT.ESKIP) THEN
885 IF( K.GT.1) THEN
886 WGAP( WINDMN ) = MAX( WGAP(WINDMN),
887 $ W(WINDEX)-WERR(WINDEX)
888 $ - W(WINDMN)-WERR(WINDMN) )
889 ENDIF
890 IF( WINDEX.LT.WEND ) THEN
891 WGAP( WINDEX ) = MAX( SAVGAP,
892 $ W( WINDPL )-WERR( WINDPL )
893 $ - W( WINDEX )-WERR( WINDEX) )
894 ENDIF
895 ENDIF
896 IDONE = IDONE + 1
897 ENDIF
898 * here ends the code for the current child
899 *
900 139 CONTINUE
901 * Proceed to any remaining child nodes
902 NEWFST = J + 1
903 140 CONTINUE
904 150 CONTINUE
905 NDEPTH = NDEPTH + 1
906 GO TO 40
907 END IF
908 IBEGIN = IEND + 1
909 WBEGIN = WEND + 1
910 170 CONTINUE
911 *
912
913 RETURN
914 *
915 * End of ZLARRV
916 *
917 END