1       SUBROUTINE ZLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          SIDE
 10       INTEGER            INCV, L, LDC, M, N
 11       COMPLEX*16         TAU
 12 *     ..
 13 *     .. Array Arguments ..
 14       COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
 15 *     ..
 16 *
 17 *  Purpose
 18 *  =======
 19 *
 20 *  ZLARZ applies a complex elementary reflector H to a complex
 21 *  M-by-N matrix C, from either the left or the right. H is represented
 22 *  in the form
 23 *
 24 *        H = I - tau * v * v**H
 25 *
 26 *  where tau is a complex scalar and v is a complex vector.
 27 *
 28 *  If tau = 0, then H is taken to be the unit matrix.
 29 *
 30 *  To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
 31 *  tau.
 32 *
 33 *  H is a product of k elementary reflectors as returned by ZTZRZF.
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  SIDE    (input) CHARACTER*1
 39 *          = 'L': form  H * C
 40 *          = 'R': form  C * H
 41 *
 42 *  M       (input) INTEGER
 43 *          The number of rows of the matrix C.
 44 *
 45 *  N       (input) INTEGER
 46 *          The number of columns of the matrix C.
 47 *
 48 *  L       (input) INTEGER
 49 *          The number of entries of the vector V containing
 50 *          the meaningful part of the Householder vectors.
 51 *          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 52 *
 53 *  V       (input) COMPLEX*16 array, dimension (1+(L-1)*abs(INCV))
 54 *          The vector v in the representation of H as returned by
 55 *          ZTZRZF. V is not used if TAU = 0.
 56 *
 57 *  INCV    (input) INTEGER
 58 *          The increment between elements of v. INCV <> 0.
 59 *
 60 *  TAU     (input) COMPLEX*16
 61 *          The value tau in the representation of H.
 62 *
 63 *  C       (input/output) COMPLEX*16 array, dimension (LDC,N)
 64 *          On entry, the M-by-N matrix C.
 65 *          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
 66 *          or C * H if SIDE = 'R'.
 67 *
 68 *  LDC     (input) INTEGER
 69 *          The leading dimension of the array C. LDC >= max(1,M).
 70 *
 71 *  WORK    (workspace) COMPLEX*16 array, dimension
 72 *                         (N) if SIDE = 'L'
 73 *                      or (M) if SIDE = 'R'
 74 *
 75 *  Further Details
 76 *  ===============
 77 *
 78 *  Based on contributions by
 79 *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 80 *
 81 *  =====================================================================
 82 *
 83 *     .. Parameters ..
 84       COMPLEX*16         ONE, ZERO
 85       PARAMETER          ( ONE = ( 1.0D+00.0D+0 ),
 86      $                   ZERO = ( 0.0D+00.0D+0 ) )
 87 *     ..
 88 *     .. External Subroutines ..
 89       EXTERNAL           ZAXPY, ZCOPY, ZGEMV, ZGERC, ZGERU, ZLACGV
 90 *     ..
 91 *     .. External Functions ..
 92       LOGICAL            LSAME
 93       EXTERNAL           LSAME
 94 *     ..
 95 *     .. Executable Statements ..
 96 *
 97       IF( LSAME( SIDE, 'L' ) ) THEN
 98 *
 99 *        Form  H * C
100 *
101          IF( TAU.NE.ZERO ) THEN
102 *
103 *           w( 1:n ) = conjg( C( 1, 1:n ) )
104 *
105             CALL ZCOPY( N, C, LDC, WORK, 1 )
106             CALL ZLACGV( N, WORK, 1 )
107 *
108 *           w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )**H * v( 1:l ) )
109 *
110             CALL ZGEMV( 'Conjugate transpose', L, N, ONE, C( M-L+11 ),
111      $                  LDC, V, INCV, ONE, WORK, 1 )
112             CALL ZLACGV( N, WORK, 1 )
113 *
114 *           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
115 *
116             CALL ZAXPY( N, -TAU, WORK, 1, C, LDC )
117 *
118 *           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
119 *                               tau * v( 1:l ) * w( 1:n )**H
120 *
121             CALL ZGERU( L, N, -TAU, V, INCV, WORK, 1, C( M-L+11 ),
122      $                  LDC )
123          END IF
124 *
125       ELSE
126 *
127 *        Form  C * H
128 *
129          IF( TAU.NE.ZERO ) THEN
130 *
131 *           w( 1:m ) = C( 1:m, 1 )
132 *
133             CALL ZCOPY( M, C, 1, WORK, 1 )
134 *
135 *           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
136 *
137             CALL ZGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
138      $                  V, INCV, ONE, WORK, 1 )
139 *
140 *           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
141 *
142             CALL ZAXPY( M, -TAU, WORK, 1, C, 1 )
143 *
144 *           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
145 *                               tau * w( 1:m ) * v( 1:l )**H
146 *
147             CALL ZGERC( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
148      $                  LDC )
149 *
150          END IF
151 *
152       END IF
153 *
154       RETURN
155 *
156 *     End of ZLARZ
157 *
158       END