1       SUBROUTINE ZLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
  2 *
  3 *  -- LAPACK routine (version 3.3.1) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *  -- April 2011                                                      --
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          DIRECT, STOREV
 10       INTEGER            K, LDT, LDV, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         T( LDT, * ), TAU( * ), V( LDV, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZLARZT forms the triangular factor T of a complex block reflector
 20 *  H of order > n, which is defined as a product of k elementary
 21 *  reflectors.
 22 *
 23 *  If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
 24 *
 25 *  If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
 26 *
 27 *  If STOREV = 'C', the vector which defines the elementary reflector
 28 *  H(i) is stored in the i-th column of the array V, and
 29 *
 30 *     H  =  I - V * T * V**H
 31 *
 32 *  If STOREV = 'R', the vector which defines the elementary reflector
 33 *  H(i) is stored in the i-th row of the array V, and
 34 *
 35 *     H  =  I - V**H * T * V
 36 *
 37 *  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
 38 *
 39 *  Arguments
 40 *  =========
 41 *
 42 *  DIRECT  (input) CHARACTER*1
 43 *          Specifies the order in which the elementary reflectors are
 44 *          multiplied to form the block reflector:
 45 *          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
 46 *          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 47 *
 48 *  STOREV  (input) CHARACTER*1
 49 *          Specifies how the vectors which define the elementary
 50 *          reflectors are stored (see also Further Details):
 51 *          = 'C': columnwise                        (not supported yet)
 52 *          = 'R': rowwise
 53 *
 54 *  N       (input) INTEGER
 55 *          The order of the block reflector H. N >= 0.
 56 *
 57 *  K       (input) INTEGER
 58 *          The order of the triangular factor T (= the number of
 59 *          elementary reflectors). K >= 1.
 60 *
 61 *  V       (input/output) COMPLEX*16 array, dimension
 62 *                               (LDV,K) if STOREV = 'C'
 63 *                               (LDV,N) if STOREV = 'R'
 64 *          The matrix V. See further details.
 65 *
 66 *  LDV     (input) INTEGER
 67 *          The leading dimension of the array V.
 68 *          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
 69 *
 70 *  TAU     (input) COMPLEX*16 array, dimension (K)
 71 *          TAU(i) must contain the scalar factor of the elementary
 72 *          reflector H(i).
 73 *
 74 *  T       (output) COMPLEX*16 array, dimension (LDT,K)
 75 *          The k by k triangular factor T of the block reflector.
 76 *          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
 77 *          lower triangular. The rest of the array is not used.
 78 *
 79 *  LDT     (input) INTEGER
 80 *          The leading dimension of the array T. LDT >= K.
 81 *
 82 *  Further Details
 83 *  ===============
 84 *
 85 *  Based on contributions by
 86 *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 87 *
 88 *  The shape of the matrix V and the storage of the vectors which define
 89 *  the H(i) is best illustrated by the following example with n = 5 and
 90 *  k = 3. The elements equal to 1 are not stored; the corresponding
 91 *  array elements are modified but restored on exit. The rest of the
 92 *  array is not used.
 93 *
 94 *  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
 95 *
 96 *                                              ______V_____
 97 *         ( v1 v2 v3 )                        /            \
 98 *         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
 99 *     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
100 *         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
101 *         ( v1 v2 v3 )
102 *            .  .  .
103 *            .  .  .
104 *            1  .  .
105 *               1  .
106 *                  1
107 *
108 *  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
109 *
110 *                                                        ______V_____
111 *            1                                          /            \
112 *            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
113 *            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
114 *            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
115 *            .  .  .
116 *         ( v1 v2 v3 )
117 *         ( v1 v2 v3 )
118 *     V = ( v1 v2 v3 )
119 *         ( v1 v2 v3 )
120 *         ( v1 v2 v3 )
121 *
122 *  =====================================================================
123 *
124 *     .. Parameters ..
125       COMPLEX*16         ZERO
126       PARAMETER          ( ZERO = ( 0.0D+00.0D+0 ) )
127 *     ..
128 *     .. Local Scalars ..
129       INTEGER            I, INFO, J
130 *     ..
131 *     .. External Subroutines ..
132       EXTERNAL           XERBLA, ZGEMV, ZLACGV, ZTRMV
133 *     ..
134 *     .. External Functions ..
135       LOGICAL            LSAME
136       EXTERNAL           LSAME
137 *     ..
138 *     .. Executable Statements ..
139 *
140 *     Check for currently supported options
141 *
142       INFO = 0
143       IF.NOT.LSAME( DIRECT'B' ) ) THEN
144          INFO = -1
145       ELSE IF.NOT.LSAME( STOREV, 'R' ) ) THEN
146          INFO = -2
147       END IF
148       IF( INFO.NE.0 ) THEN
149          CALL XERBLA( 'ZLARZT'-INFO )
150          RETURN
151       END IF
152 *
153       DO 20 I = K, 1-1
154          IF( TAU( I ).EQ.ZERO ) THEN
155 *
156 *           H(i)  =  I
157 *
158             DO 10 J = I, K
159                T( J, I ) = ZERO
160    10       CONTINUE
161          ELSE
162 *
163 *           general case
164 *
165             IF( I.LT.K ) THEN
166 *
167 *              T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H
168 *
169                CALL ZLACGV( N, V( I, 1 ), LDV )
170                CALL ZGEMV( 'No transpose', K-I, N, -TAU( I ),
171      $                     V( I+11 ), LDV, V( I, 1 ), LDV, ZERO,
172      $                     T( I+1, I ), 1 )
173                CALL ZLACGV( N, V( I, 1 ), LDV )
174 *
175 *              T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
176 *
177                CALL ZTRMV( 'Lower''No transpose''Non-unit', K-I,
178      $                     T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
179             END IF
180             T( I, I ) = TAU( I )
181          END IF
182    20 CONTINUE
183       RETURN
184 *
185 *     End of ZLARZT
186 *
187       END