1 SUBROUTINE ZLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
2 *
3 * -- LAPACK auxiliary routine (version 3.2) --
4 * -- LAPACK is a software package provided by Univ. of Tennessee, --
5 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 * November 2006
7 *
8 * .. Scalar Arguments ..
9 CHARACTER DIRECT, PIVOT, SIDE
10 INTEGER LDA, M, N
11 * ..
12 * .. Array Arguments ..
13 DOUBLE PRECISION C( * ), S( * )
14 COMPLEX*16 A( LDA, * )
15 * ..
16 *
17 * Purpose
18 * =======
19 *
20 * ZLASR applies a sequence of real plane rotations to a complex matrix
21 * A, from either the left or the right.
22 *
23 * When SIDE = 'L', the transformation takes the form
24 *
25 * A := P*A
26 *
27 * and when SIDE = 'R', the transformation takes the form
28 *
29 * A := A*P**T
30 *
31 * where P is an orthogonal matrix consisting of a sequence of z plane
32 * rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
33 * and P**T is the transpose of P.
34 *
35 * When DIRECT = 'F' (Forward sequence), then
36 *
37 * P = P(z-1) * ... * P(2) * P(1)
38 *
39 * and when DIRECT = 'B' (Backward sequence), then
40 *
41 * P = P(1) * P(2) * ... * P(z-1)
42 *
43 * where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
44 *
45 * R(k) = ( c(k) s(k) )
46 * = ( -s(k) c(k) ).
47 *
48 * When PIVOT = 'V' (Variable pivot), the rotation is performed
49 * for the plane (k,k+1), i.e., P(k) has the form
50 *
51 * P(k) = ( 1 )
52 * ( ... )
53 * ( 1 )
54 * ( c(k) s(k) )
55 * ( -s(k) c(k) )
56 * ( 1 )
57 * ( ... )
58 * ( 1 )
59 *
60 * where R(k) appears as a rank-2 modification to the identity matrix in
61 * rows and columns k and k+1.
62 *
63 * When PIVOT = 'T' (Top pivot), the rotation is performed for the
64 * plane (1,k+1), so P(k) has the form
65 *
66 * P(k) = ( c(k) s(k) )
67 * ( 1 )
68 * ( ... )
69 * ( 1 )
70 * ( -s(k) c(k) )
71 * ( 1 )
72 * ( ... )
73 * ( 1 )
74 *
75 * where R(k) appears in rows and columns 1 and k+1.
76 *
77 * Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
78 * performed for the plane (k,z), giving P(k) the form
79 *
80 * P(k) = ( 1 )
81 * ( ... )
82 * ( 1 )
83 * ( c(k) s(k) )
84 * ( 1 )
85 * ( ... )
86 * ( 1 )
87 * ( -s(k) c(k) )
88 *
89 * where R(k) appears in rows and columns k and z. The rotations are
90 * performed without ever forming P(k) explicitly.
91 *
92 * Arguments
93 * =========
94 *
95 * SIDE (input) CHARACTER*1
96 * Specifies whether the plane rotation matrix P is applied to
97 * A on the left or the right.
98 * = 'L': Left, compute A := P*A
99 * = 'R': Right, compute A:= A*P**T
100 *
101 * PIVOT (input) CHARACTER*1
102 * Specifies the plane for which P(k) is a plane rotation
103 * matrix.
104 * = 'V': Variable pivot, the plane (k,k+1)
105 * = 'T': Top pivot, the plane (1,k+1)
106 * = 'B': Bottom pivot, the plane (k,z)
107 *
108 * DIRECT (input) CHARACTER*1
109 * Specifies whether P is a forward or backward sequence of
110 * plane rotations.
111 * = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
112 * = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
113 *
114 * M (input) INTEGER
115 * The number of rows of the matrix A. If m <= 1, an immediate
116 * return is effected.
117 *
118 * N (input) INTEGER
119 * The number of columns of the matrix A. If n <= 1, an
120 * immediate return is effected.
121 *
122 * C (input) DOUBLE PRECISION array, dimension
123 * (M-1) if SIDE = 'L'
124 * (N-1) if SIDE = 'R'
125 * The cosines c(k) of the plane rotations.
126 *
127 * S (input) DOUBLE PRECISION array, dimension
128 * (M-1) if SIDE = 'L'
129 * (N-1) if SIDE = 'R'
130 * The sines s(k) of the plane rotations. The 2-by-2 plane
131 * rotation part of the matrix P(k), R(k), has the form
132 * R(k) = ( c(k) s(k) )
133 * ( -s(k) c(k) ).
134 *
135 * A (input/output) COMPLEX*16 array, dimension (LDA,N)
136 * The M-by-N matrix A. On exit, A is overwritten by P*A if
137 * SIDE = 'R' or by A*P**T if SIDE = 'L'.
138 *
139 * LDA (input) INTEGER
140 * The leading dimension of the array A. LDA >= max(1,M).
141 *
142 * =====================================================================
143 *
144 * .. Parameters ..
145 DOUBLE PRECISION ONE, ZERO
146 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
147 * ..
148 * .. Local Scalars ..
149 INTEGER I, INFO, J
150 DOUBLE PRECISION CTEMP, STEMP
151 COMPLEX*16 TEMP
152 * ..
153 * .. Intrinsic Functions ..
154 INTRINSIC MAX
155 * ..
156 * .. External Functions ..
157 LOGICAL LSAME
158 EXTERNAL LSAME
159 * ..
160 * .. External Subroutines ..
161 EXTERNAL XERBLA
162 * ..
163 * .. Executable Statements ..
164 *
165 * Test the input parameters
166 *
167 INFO = 0
168 IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
169 INFO = 1
170 ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
171 $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
172 INFO = 2
173 ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
174 $ THEN
175 INFO = 3
176 ELSE IF( M.LT.0 ) THEN
177 INFO = 4
178 ELSE IF( N.LT.0 ) THEN
179 INFO = 5
180 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
181 INFO = 9
182 END IF
183 IF( INFO.NE.0 ) THEN
184 CALL XERBLA( 'ZLASR ', INFO )
185 RETURN
186 END IF
187 *
188 * Quick return if possible
189 *
190 IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
191 $ RETURN
192 IF( LSAME( SIDE, 'L' ) ) THEN
193 *
194 * Form P * A
195 *
196 IF( LSAME( PIVOT, 'V' ) ) THEN
197 IF( LSAME( DIRECT, 'F' ) ) THEN
198 DO 20 J = 1, M - 1
199 CTEMP = C( J )
200 STEMP = S( J )
201 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
202 DO 10 I = 1, N
203 TEMP = A( J+1, I )
204 A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
205 A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
206 10 CONTINUE
207 END IF
208 20 CONTINUE
209 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
210 DO 40 J = M - 1, 1, -1
211 CTEMP = C( J )
212 STEMP = S( J )
213 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
214 DO 30 I = 1, N
215 TEMP = A( J+1, I )
216 A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
217 A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
218 30 CONTINUE
219 END IF
220 40 CONTINUE
221 END IF
222 ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
223 IF( LSAME( DIRECT, 'F' ) ) THEN
224 DO 60 J = 2, M
225 CTEMP = C( J-1 )
226 STEMP = S( J-1 )
227 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
228 DO 50 I = 1, N
229 TEMP = A( J, I )
230 A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
231 A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
232 50 CONTINUE
233 END IF
234 60 CONTINUE
235 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
236 DO 80 J = M, 2, -1
237 CTEMP = C( J-1 )
238 STEMP = S( J-1 )
239 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
240 DO 70 I = 1, N
241 TEMP = A( J, I )
242 A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
243 A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
244 70 CONTINUE
245 END IF
246 80 CONTINUE
247 END IF
248 ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
249 IF( LSAME( DIRECT, 'F' ) ) THEN
250 DO 100 J = 1, M - 1
251 CTEMP = C( J )
252 STEMP = S( J )
253 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
254 DO 90 I = 1, N
255 TEMP = A( J, I )
256 A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
257 A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
258 90 CONTINUE
259 END IF
260 100 CONTINUE
261 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
262 DO 120 J = M - 1, 1, -1
263 CTEMP = C( J )
264 STEMP = S( J )
265 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
266 DO 110 I = 1, N
267 TEMP = A( J, I )
268 A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
269 A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
270 110 CONTINUE
271 END IF
272 120 CONTINUE
273 END IF
274 END IF
275 ELSE IF( LSAME( SIDE, 'R' ) ) THEN
276 *
277 * Form A * P**T
278 *
279 IF( LSAME( PIVOT, 'V' ) ) THEN
280 IF( LSAME( DIRECT, 'F' ) ) THEN
281 DO 140 J = 1, N - 1
282 CTEMP = C( J )
283 STEMP = S( J )
284 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
285 DO 130 I = 1, M
286 TEMP = A( I, J+1 )
287 A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
288 A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
289 130 CONTINUE
290 END IF
291 140 CONTINUE
292 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
293 DO 160 J = N - 1, 1, -1
294 CTEMP = C( J )
295 STEMP = S( J )
296 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
297 DO 150 I = 1, M
298 TEMP = A( I, J+1 )
299 A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
300 A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
301 150 CONTINUE
302 END IF
303 160 CONTINUE
304 END IF
305 ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
306 IF( LSAME( DIRECT, 'F' ) ) THEN
307 DO 180 J = 2, N
308 CTEMP = C( J-1 )
309 STEMP = S( J-1 )
310 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
311 DO 170 I = 1, M
312 TEMP = A( I, J )
313 A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
314 A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
315 170 CONTINUE
316 END IF
317 180 CONTINUE
318 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
319 DO 200 J = N, 2, -1
320 CTEMP = C( J-1 )
321 STEMP = S( J-1 )
322 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
323 DO 190 I = 1, M
324 TEMP = A( I, J )
325 A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
326 A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
327 190 CONTINUE
328 END IF
329 200 CONTINUE
330 END IF
331 ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
332 IF( LSAME( DIRECT, 'F' ) ) THEN
333 DO 220 J = 1, N - 1
334 CTEMP = C( J )
335 STEMP = S( J )
336 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
337 DO 210 I = 1, M
338 TEMP = A( I, J )
339 A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
340 A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
341 210 CONTINUE
342 END IF
343 220 CONTINUE
344 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
345 DO 240 J = N - 1, 1, -1
346 CTEMP = C( J )
347 STEMP = S( J )
348 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
349 DO 230 I = 1, M
350 TEMP = A( I, J )
351 A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
352 A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
353 230 CONTINUE
354 END IF
355 240 CONTINUE
356 END IF
357 END IF
358 END IF
359 *
360 RETURN
361 *
362 * End of ZLASR
363 *
364 END
2 *
3 * -- LAPACK auxiliary routine (version 3.2) --
4 * -- LAPACK is a software package provided by Univ. of Tennessee, --
5 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
6 * November 2006
7 *
8 * .. Scalar Arguments ..
9 CHARACTER DIRECT, PIVOT, SIDE
10 INTEGER LDA, M, N
11 * ..
12 * .. Array Arguments ..
13 DOUBLE PRECISION C( * ), S( * )
14 COMPLEX*16 A( LDA, * )
15 * ..
16 *
17 * Purpose
18 * =======
19 *
20 * ZLASR applies a sequence of real plane rotations to a complex matrix
21 * A, from either the left or the right.
22 *
23 * When SIDE = 'L', the transformation takes the form
24 *
25 * A := P*A
26 *
27 * and when SIDE = 'R', the transformation takes the form
28 *
29 * A := A*P**T
30 *
31 * where P is an orthogonal matrix consisting of a sequence of z plane
32 * rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
33 * and P**T is the transpose of P.
34 *
35 * When DIRECT = 'F' (Forward sequence), then
36 *
37 * P = P(z-1) * ... * P(2) * P(1)
38 *
39 * and when DIRECT = 'B' (Backward sequence), then
40 *
41 * P = P(1) * P(2) * ... * P(z-1)
42 *
43 * where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
44 *
45 * R(k) = ( c(k) s(k) )
46 * = ( -s(k) c(k) ).
47 *
48 * When PIVOT = 'V' (Variable pivot), the rotation is performed
49 * for the plane (k,k+1), i.e., P(k) has the form
50 *
51 * P(k) = ( 1 )
52 * ( ... )
53 * ( 1 )
54 * ( c(k) s(k) )
55 * ( -s(k) c(k) )
56 * ( 1 )
57 * ( ... )
58 * ( 1 )
59 *
60 * where R(k) appears as a rank-2 modification to the identity matrix in
61 * rows and columns k and k+1.
62 *
63 * When PIVOT = 'T' (Top pivot), the rotation is performed for the
64 * plane (1,k+1), so P(k) has the form
65 *
66 * P(k) = ( c(k) s(k) )
67 * ( 1 )
68 * ( ... )
69 * ( 1 )
70 * ( -s(k) c(k) )
71 * ( 1 )
72 * ( ... )
73 * ( 1 )
74 *
75 * where R(k) appears in rows and columns 1 and k+1.
76 *
77 * Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
78 * performed for the plane (k,z), giving P(k) the form
79 *
80 * P(k) = ( 1 )
81 * ( ... )
82 * ( 1 )
83 * ( c(k) s(k) )
84 * ( 1 )
85 * ( ... )
86 * ( 1 )
87 * ( -s(k) c(k) )
88 *
89 * where R(k) appears in rows and columns k and z. The rotations are
90 * performed without ever forming P(k) explicitly.
91 *
92 * Arguments
93 * =========
94 *
95 * SIDE (input) CHARACTER*1
96 * Specifies whether the plane rotation matrix P is applied to
97 * A on the left or the right.
98 * = 'L': Left, compute A := P*A
99 * = 'R': Right, compute A:= A*P**T
100 *
101 * PIVOT (input) CHARACTER*1
102 * Specifies the plane for which P(k) is a plane rotation
103 * matrix.
104 * = 'V': Variable pivot, the plane (k,k+1)
105 * = 'T': Top pivot, the plane (1,k+1)
106 * = 'B': Bottom pivot, the plane (k,z)
107 *
108 * DIRECT (input) CHARACTER*1
109 * Specifies whether P is a forward or backward sequence of
110 * plane rotations.
111 * = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
112 * = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
113 *
114 * M (input) INTEGER
115 * The number of rows of the matrix A. If m <= 1, an immediate
116 * return is effected.
117 *
118 * N (input) INTEGER
119 * The number of columns of the matrix A. If n <= 1, an
120 * immediate return is effected.
121 *
122 * C (input) DOUBLE PRECISION array, dimension
123 * (M-1) if SIDE = 'L'
124 * (N-1) if SIDE = 'R'
125 * The cosines c(k) of the plane rotations.
126 *
127 * S (input) DOUBLE PRECISION array, dimension
128 * (M-1) if SIDE = 'L'
129 * (N-1) if SIDE = 'R'
130 * The sines s(k) of the plane rotations. The 2-by-2 plane
131 * rotation part of the matrix P(k), R(k), has the form
132 * R(k) = ( c(k) s(k) )
133 * ( -s(k) c(k) ).
134 *
135 * A (input/output) COMPLEX*16 array, dimension (LDA,N)
136 * The M-by-N matrix A. On exit, A is overwritten by P*A if
137 * SIDE = 'R' or by A*P**T if SIDE = 'L'.
138 *
139 * LDA (input) INTEGER
140 * The leading dimension of the array A. LDA >= max(1,M).
141 *
142 * =====================================================================
143 *
144 * .. Parameters ..
145 DOUBLE PRECISION ONE, ZERO
146 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
147 * ..
148 * .. Local Scalars ..
149 INTEGER I, INFO, J
150 DOUBLE PRECISION CTEMP, STEMP
151 COMPLEX*16 TEMP
152 * ..
153 * .. Intrinsic Functions ..
154 INTRINSIC MAX
155 * ..
156 * .. External Functions ..
157 LOGICAL LSAME
158 EXTERNAL LSAME
159 * ..
160 * .. External Subroutines ..
161 EXTERNAL XERBLA
162 * ..
163 * .. Executable Statements ..
164 *
165 * Test the input parameters
166 *
167 INFO = 0
168 IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
169 INFO = 1
170 ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
171 $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
172 INFO = 2
173 ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
174 $ THEN
175 INFO = 3
176 ELSE IF( M.LT.0 ) THEN
177 INFO = 4
178 ELSE IF( N.LT.0 ) THEN
179 INFO = 5
180 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
181 INFO = 9
182 END IF
183 IF( INFO.NE.0 ) THEN
184 CALL XERBLA( 'ZLASR ', INFO )
185 RETURN
186 END IF
187 *
188 * Quick return if possible
189 *
190 IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
191 $ RETURN
192 IF( LSAME( SIDE, 'L' ) ) THEN
193 *
194 * Form P * A
195 *
196 IF( LSAME( PIVOT, 'V' ) ) THEN
197 IF( LSAME( DIRECT, 'F' ) ) THEN
198 DO 20 J = 1, M - 1
199 CTEMP = C( J )
200 STEMP = S( J )
201 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
202 DO 10 I = 1, N
203 TEMP = A( J+1, I )
204 A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
205 A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
206 10 CONTINUE
207 END IF
208 20 CONTINUE
209 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
210 DO 40 J = M - 1, 1, -1
211 CTEMP = C( J )
212 STEMP = S( J )
213 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
214 DO 30 I = 1, N
215 TEMP = A( J+1, I )
216 A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
217 A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
218 30 CONTINUE
219 END IF
220 40 CONTINUE
221 END IF
222 ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
223 IF( LSAME( DIRECT, 'F' ) ) THEN
224 DO 60 J = 2, M
225 CTEMP = C( J-1 )
226 STEMP = S( J-1 )
227 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
228 DO 50 I = 1, N
229 TEMP = A( J, I )
230 A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
231 A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
232 50 CONTINUE
233 END IF
234 60 CONTINUE
235 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
236 DO 80 J = M, 2, -1
237 CTEMP = C( J-1 )
238 STEMP = S( J-1 )
239 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
240 DO 70 I = 1, N
241 TEMP = A( J, I )
242 A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
243 A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
244 70 CONTINUE
245 END IF
246 80 CONTINUE
247 END IF
248 ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
249 IF( LSAME( DIRECT, 'F' ) ) THEN
250 DO 100 J = 1, M - 1
251 CTEMP = C( J )
252 STEMP = S( J )
253 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
254 DO 90 I = 1, N
255 TEMP = A( J, I )
256 A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
257 A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
258 90 CONTINUE
259 END IF
260 100 CONTINUE
261 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
262 DO 120 J = M - 1, 1, -1
263 CTEMP = C( J )
264 STEMP = S( J )
265 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
266 DO 110 I = 1, N
267 TEMP = A( J, I )
268 A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
269 A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
270 110 CONTINUE
271 END IF
272 120 CONTINUE
273 END IF
274 END IF
275 ELSE IF( LSAME( SIDE, 'R' ) ) THEN
276 *
277 * Form A * P**T
278 *
279 IF( LSAME( PIVOT, 'V' ) ) THEN
280 IF( LSAME( DIRECT, 'F' ) ) THEN
281 DO 140 J = 1, N - 1
282 CTEMP = C( J )
283 STEMP = S( J )
284 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
285 DO 130 I = 1, M
286 TEMP = A( I, J+1 )
287 A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
288 A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
289 130 CONTINUE
290 END IF
291 140 CONTINUE
292 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
293 DO 160 J = N - 1, 1, -1
294 CTEMP = C( J )
295 STEMP = S( J )
296 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
297 DO 150 I = 1, M
298 TEMP = A( I, J+1 )
299 A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
300 A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
301 150 CONTINUE
302 END IF
303 160 CONTINUE
304 END IF
305 ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
306 IF( LSAME( DIRECT, 'F' ) ) THEN
307 DO 180 J = 2, N
308 CTEMP = C( J-1 )
309 STEMP = S( J-1 )
310 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
311 DO 170 I = 1, M
312 TEMP = A( I, J )
313 A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
314 A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
315 170 CONTINUE
316 END IF
317 180 CONTINUE
318 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
319 DO 200 J = N, 2, -1
320 CTEMP = C( J-1 )
321 STEMP = S( J-1 )
322 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
323 DO 190 I = 1, M
324 TEMP = A( I, J )
325 A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
326 A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
327 190 CONTINUE
328 END IF
329 200 CONTINUE
330 END IF
331 ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
332 IF( LSAME( DIRECT, 'F' ) ) THEN
333 DO 220 J = 1, N - 1
334 CTEMP = C( J )
335 STEMP = S( J )
336 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
337 DO 210 I = 1, M
338 TEMP = A( I, J )
339 A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
340 A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
341 210 CONTINUE
342 END IF
343 220 CONTINUE
344 ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
345 DO 240 J = N - 1, 1, -1
346 CTEMP = C( J )
347 STEMP = S( J )
348 IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
349 DO 230 I = 1, M
350 TEMP = A( I, J )
351 A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
352 A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
353 230 CONTINUE
354 END IF
355 240 CONTINUE
356 END IF
357 END IF
358 END IF
359 *
360 RETURN
361 *
362 * End of ZLASR
363 *
364 END