1       SUBROUTINE ZLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X,
  2      $                   SCALE, CNORM, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 11       INTEGER            INFO, KD, LDAB, N
 12       DOUBLE PRECISION   SCALE
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   CNORM( * )
 16       COMPLEX*16         AB( LDAB, * ), X( * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZLATBS solves one of the triangular systems
 23 *
 24 *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
 25 *
 26 *  with scaling to prevent overflow, where A is an upper or lower
 27 *  triangular band matrix.  Here A**T denotes the transpose of A, x and b
 28 *  are n-element vectors, and s is a scaling factor, usually less than
 29 *  or equal to 1, chosen so that the components of x will be less than
 30 *  the overflow threshold.  If the unscaled problem will not cause
 31 *  overflow, the Level 2 BLAS routine ZTBSV is called.  If the matrix A
 32 *  is singular (A(j,j) = 0 for some j), then s is set to 0 and a
 33 *  non-trivial solution to A*x = 0 is returned.
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  UPLO    (input) CHARACTER*1
 39 *          Specifies whether the matrix A is upper or lower triangular.
 40 *          = 'U':  Upper triangular
 41 *          = 'L':  Lower triangular
 42 *
 43 *  TRANS   (input) CHARACTER*1
 44 *          Specifies the operation applied to A.
 45 *          = 'N':  Solve A * x = s*b     (No transpose)
 46 *          = 'T':  Solve A**T * x = s*b  (Transpose)
 47 *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
 48 *
 49 *  DIAG    (input) CHARACTER*1
 50 *          Specifies whether or not the matrix A is unit triangular.
 51 *          = 'N':  Non-unit triangular
 52 *          = 'U':  Unit triangular
 53 *
 54 *  NORMIN  (input) CHARACTER*1
 55 *          Specifies whether CNORM has been set or not.
 56 *          = 'Y':  CNORM contains the column norms on entry
 57 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
 58 *                  be computed and stored in CNORM.
 59 *
 60 *  N       (input) INTEGER
 61 *          The order of the matrix A.  N >= 0.
 62 *
 63 *  KD      (input) INTEGER
 64 *          The number of subdiagonals or superdiagonals in the
 65 *          triangular matrix A.  KD >= 0.
 66 *
 67 *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
 68 *          The upper or lower triangular band matrix A, stored in the
 69 *          first KD+1 rows of the array. The j-th column of A is stored
 70 *          in the j-th column of the array AB as follows:
 71 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 72 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 73 *
 74 *  LDAB    (input) INTEGER
 75 *          The leading dimension of the array AB.  LDAB >= KD+1.
 76 *
 77 *  X       (input/output) COMPLEX*16 array, dimension (N)
 78 *          On entry, the right hand side b of the triangular system.
 79 *          On exit, X is overwritten by the solution vector x.
 80 *
 81 *  SCALE   (output) DOUBLE PRECISION
 82 *          The scaling factor s for the triangular system
 83 *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
 84 *          If SCALE = 0, the matrix A is singular or badly scaled, and
 85 *          the vector x is an exact or approximate solution to A*x = 0.
 86 *
 87 *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
 88 *
 89 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
 90 *          contains the norm of the off-diagonal part of the j-th column
 91 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
 92 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
 93 *          must be greater than or equal to the 1-norm.
 94 *
 95 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
 96 *          returns the 1-norm of the offdiagonal part of the j-th column
 97 *          of A.
 98 *
 99 *  INFO    (output) INTEGER
100 *          = 0:  successful exit
101 *          < 0:  if INFO = -k, the k-th argument had an illegal value
102 *
103 *  Further Details
104 *  ======= =======
105 *
106 *  A rough bound on x is computed; if that is less than overflow, ZTBSV
107 *  is called, otherwise, specific code is used which checks for possible
108 *  overflow or divide-by-zero at every operation.
109 *
110 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
111 *  if A is lower triangular is
112 *
113 *       x[1:n] := b[1:n]
114 *       for j = 1, ..., n
115 *            x(j) := x(j) / A(j,j)
116 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
117 *       end
118 *
119 *  Define bounds on the components of x after j iterations of the loop:
120 *     M(j) = bound on x[1:j]
121 *     G(j) = bound on x[j+1:n]
122 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
123 *
124 *  Then for iteration j+1 we have
125 *     M(j+1) <= G(j) / | A(j+1,j+1) |
126 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
127 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
128 *
129 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
130 *  column j+1 of A, not counting the diagonal.  Hence
131 *
132 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
133 *                  1<=i<=j
134 *  and
135 *
136 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
137 *                                   1<=i< j
138 *
139 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTBSV if the
140 *  reciprocal of the largest M(j), j=1,..,n, is larger than
141 *  max(underflow, 1/overflow).
142 *
143 *  The bound on x(j) is also used to determine when a step in the
144 *  columnwise method can be performed without fear of overflow.  If
145 *  the computed bound is greater than a large constant, x is scaled to
146 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
147 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
148 *
149 *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
150 *  A**H *x = b.  The basic algorithm for A upper triangular is
151 *
152 *       for j = 1, ..., n
153 *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
154 *       end
155 *
156 *  We simultaneously compute two bounds
157 *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
158 *       M(j) = bound on x(i), 1<=i<=j
159 *
160 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
161 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
162 *  Then the bound on x(j) is
163 *
164 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
165 *
166 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
167 *                      1<=i<=j
168 *
169 *  and we can safely call ZTBSV if 1/M(n) and 1/G(n) are both greater
170 *  than max(underflow, 1/overflow).
171 *
172 *  =====================================================================
173 *
174 *     .. Parameters ..
175       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
176       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
177      $                   TWO = 2.0D+0 )
178 *     ..
179 *     .. Local Scalars ..
180       LOGICAL            NOTRAN, NOUNIT, UPPER
181       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST, JLEN, MAIND
182       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
183      $                   XBND, XJ, XMAX
184       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
185 *     ..
186 *     .. External Functions ..
187       LOGICAL            LSAME
188       INTEGER            IDAMAX, IZAMAX
189       DOUBLE PRECISION   DLAMCH, DZASUM
190       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
191       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
192      $                   ZDOTU, ZLADIV
193 *     ..
194 *     .. External Subroutines ..
195       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV
196 *     ..
197 *     .. Intrinsic Functions ..
198       INTRINSIC          ABSDBLEDCMPLXDCONJGDIMAGMAXMIN
199 *     ..
200 *     .. Statement Functions ..
201       DOUBLE PRECISION   CABS1, CABS2
202 *     ..
203 *     .. Statement Function definitions ..
204       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
205       CABS2( ZDUM ) = ABSDBLE( ZDUM ) / 2.D0 ) +
206      $                ABSDIMAG( ZDUM ) / 2.D0 )
207 *     ..
208 *     .. Executable Statements ..
209 *
210       INFO = 0
211       UPPER = LSAME( UPLO, 'U' )
212       NOTRAN = LSAME( TRANS, 'N' )
213       NOUNIT = LSAME( DIAG, 'N' )
214 *
215 *     Test the input parameters.
216 *
217       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
218          INFO = -1
219       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
220      $         LSAME( TRANS, 'C' ) ) THEN
221          INFO = -2
222       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
223          INFO = -3
224       ELSE IF.NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
225      $         LSAME( NORMIN, 'N' ) ) THEN
226          INFO = -4
227       ELSE IF( N.LT.0 ) THEN
228          INFO = -5
229       ELSE IF( KD.LT.0 ) THEN
230          INFO = -6
231       ELSE IF( LDAB.LT.KD+1 ) THEN
232          INFO = -8
233       END IF
234       IF( INFO.NE.0 ) THEN
235          CALL XERBLA( 'ZLATBS'-INFO )
236          RETURN
237       END IF
238 *
239 *     Quick return if possible
240 *
241       IF( N.EQ.0 )
242      $   RETURN
243 *
244 *     Determine machine dependent parameters to control overflow.
245 *
246       SMLNUM = DLAMCH( 'Safe minimum' )
247       BIGNUM = ONE / SMLNUM
248       CALL DLABAD( SMLNUM, BIGNUM )
249       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
250       BIGNUM = ONE / SMLNUM
251       SCALE = ONE
252 *
253       IF( LSAME( NORMIN, 'N' ) ) THEN
254 *
255 *        Compute the 1-norm of each column, not including the diagonal.
256 *
257          IF( UPPER ) THEN
258 *
259 *           A is upper triangular.
260 *
261             DO 10 J = 1, N
262                JLEN = MIN( KD, J-1 )
263                CNORM( J ) = DZASUM( JLEN, AB( KD+1-JLEN, J ), 1 )
264    10       CONTINUE
265          ELSE
266 *
267 *           A is lower triangular.
268 *
269             DO 20 J = 1, N
270                JLEN = MIN( KD, N-J )
271                IF( JLEN.GT.0 ) THEN
272                   CNORM( J ) = DZASUM( JLEN, AB( 2, J ), 1 )
273                ELSE
274                   CNORM( J ) = ZERO
275                END IF
276    20       CONTINUE
277          END IF
278       END IF
279 *
280 *     Scale the column norms by TSCAL if the maximum element in CNORM is
281 *     greater than BIGNUM/2.
282 *
283       IMAX = IDAMAX( N, CNORM, 1 )
284       TMAX = CNORM( IMAX )
285       IF( TMAX.LE.BIGNUM*HALF ) THEN
286          TSCAL = ONE
287       ELSE
288          TSCAL = HALF / ( SMLNUM*TMAX )
289          CALL DSCAL( N, TSCAL, CNORM, 1 )
290       END IF
291 *
292 *     Compute a bound on the computed solution vector to see if the
293 *     Level 2 BLAS routine ZTBSV can be used.
294 *
295       XMAX = ZERO
296       DO 30 J = 1, N
297          XMAX = MAX( XMAX, CABS2( X( J ) ) )
298    30 CONTINUE
299       XBND = XMAX
300       IF( NOTRAN ) THEN
301 *
302 *        Compute the growth in A * x = b.
303 *
304          IF( UPPER ) THEN
305             JFIRST = N
306             JLAST = 1
307             JINC = -1
308             MAIND = KD + 1
309          ELSE
310             JFIRST = 1
311             JLAST = N
312             JINC = 1
313             MAIND = 1
314          END IF
315 *
316          IF( TSCAL.NE.ONE ) THEN
317             GROW = ZERO
318             GO TO 60
319          END IF
320 *
321          IF( NOUNIT ) THEN
322 *
323 *           A is non-unit triangular.
324 *
325 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
326 *           Initially, G(0) = max{x(i), i=1,...,n}.
327 *
328             GROW = HALF / MAX( XBND, SMLNUM )
329             XBND = GROW
330             DO 40 J = JFIRST, JLAST, JINC
331 *
332 *              Exit the loop if the growth factor is too small.
333 *
334                IF( GROW.LE.SMLNUM )
335      $            GO TO 60
336 *
337                TJJS = AB( MAIND, J )
338                TJJ = CABS1( TJJS )
339 *
340                IF( TJJ.GE.SMLNUM ) THEN
341 *
342 *                 M(j) = G(j-1) / abs(A(j,j))
343 *
344                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
345                ELSE
346 *
347 *                 M(j) could overflow, set XBND to 0.
348 *
349                   XBND = ZERO
350                END IF
351 *
352                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
353 *
354 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
355 *
356                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
357                ELSE
358 *
359 *                 G(j) could overflow, set GROW to 0.
360 *
361                   GROW = ZERO
362                END IF
363    40       CONTINUE
364             GROW = XBND
365          ELSE
366 *
367 *           A is unit triangular.
368 *
369 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
370 *
371             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
372             DO 50 J = JFIRST, JLAST, JINC
373 *
374 *              Exit the loop if the growth factor is too small.
375 *
376                IF( GROW.LE.SMLNUM )
377      $            GO TO 60
378 *
379 *              G(j) = G(j-1)*( 1 + CNORM(j) )
380 *
381                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
382    50       CONTINUE
383          END IF
384    60    CONTINUE
385 *
386       ELSE
387 *
388 *        Compute the growth in A**T * x = b  or  A**H * x = b.
389 *
390          IF( UPPER ) THEN
391             JFIRST = 1
392             JLAST = N
393             JINC = 1
394             MAIND = KD + 1
395          ELSE
396             JFIRST = N
397             JLAST = 1
398             JINC = -1
399             MAIND = 1
400          END IF
401 *
402          IF( TSCAL.NE.ONE ) THEN
403             GROW = ZERO
404             GO TO 90
405          END IF
406 *
407          IF( NOUNIT ) THEN
408 *
409 *           A is non-unit triangular.
410 *
411 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
412 *           Initially, M(0) = max{x(i), i=1,...,n}.
413 *
414             GROW = HALF / MAX( XBND, SMLNUM )
415             XBND = GROW
416             DO 70 J = JFIRST, JLAST, JINC
417 *
418 *              Exit the loop if the growth factor is too small.
419 *
420                IF( GROW.LE.SMLNUM )
421      $            GO TO 90
422 *
423 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
424 *
425                XJ = ONE + CNORM( J )
426                GROW = MIN( GROW, XBND / XJ )
427 *
428                TJJS = AB( MAIND, J )
429                TJJ = CABS1( TJJS )
430 *
431                IF( TJJ.GE.SMLNUM ) THEN
432 *
433 *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
434 *
435                   IF( XJ.GT.TJJ )
436      $               XBND = XBND*( TJJ / XJ )
437                ELSE
438 *
439 *                 M(j) could overflow, set XBND to 0.
440 *
441                   XBND = ZERO
442                END IF
443    70       CONTINUE
444             GROW = MIN( GROW, XBND )
445          ELSE
446 *
447 *           A is unit triangular.
448 *
449 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
450 *
451             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
452             DO 80 J = JFIRST, JLAST, JINC
453 *
454 *              Exit the loop if the growth factor is too small.
455 *
456                IF( GROW.LE.SMLNUM )
457      $            GO TO 90
458 *
459 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
460 *
461                XJ = ONE + CNORM( J )
462                GROW = GROW / XJ
463    80       CONTINUE
464          END IF
465    90    CONTINUE
466       END IF
467 *
468       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
469 *
470 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
471 *        elements of X is not too small.
472 *
473          CALL ZTBSV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, X, 1 )
474       ELSE
475 *
476 *        Use a Level 1 BLAS solve, scaling intermediate results.
477 *
478          IF( XMAX.GT.BIGNUM*HALF ) THEN
479 *
480 *           Scale X so that its components are less than or equal to
481 *           BIGNUM in absolute value.
482 *
483             SCALE = ( BIGNUM*HALF ) / XMAX
484             CALL ZDSCAL( N, SCALE, X, 1 )
485             XMAX = BIGNUM
486          ELSE
487             XMAX = XMAX*TWO
488          END IF
489 *
490          IF( NOTRAN ) THEN
491 *
492 *           Solve A * x = b
493 *
494             DO 120 J = JFIRST, JLAST, JINC
495 *
496 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
497 *
498                XJ = CABS1( X( J ) )
499                IF( NOUNIT ) THEN
500                   TJJS = AB( MAIND, J )*TSCAL
501                ELSE
502                   TJJS = TSCAL
503                   IF( TSCAL.EQ.ONE )
504      $               GO TO 110
505                END IF
506                TJJ = CABS1( TJJS )
507                IF( TJJ.GT.SMLNUM ) THEN
508 *
509 *                    abs(A(j,j)) > SMLNUM:
510 *
511                   IF( TJJ.LT.ONE ) THEN
512                      IF( XJ.GT.TJJ*BIGNUM ) THEN
513 *
514 *                          Scale x by 1/b(j).
515 *
516                         REC = ONE / XJ
517                         CALL ZDSCAL( N, REC, X, 1 )
518                         SCALE = SCALE*REC
519                         XMAX = XMAX*REC
520                      END IF
521                   END IF
522                   X( J ) = ZLADIV( X( J ), TJJS )
523                   XJ = CABS1( X( J ) )
524                ELSE IF( TJJ.GT.ZERO ) THEN
525 *
526 *                    0 < abs(A(j,j)) <= SMLNUM:
527 *
528                   IF( XJ.GT.TJJ*BIGNUM ) THEN
529 *
530 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
531 *                       to avoid overflow when dividing by A(j,j).
532 *
533                      REC = ( TJJ*BIGNUM ) / XJ
534                      IF( CNORM( J ).GT.ONE ) THEN
535 *
536 *                          Scale by 1/CNORM(j) to avoid overflow when
537 *                          multiplying x(j) times column j.
538 *
539                         REC = REC / CNORM( J )
540                      END IF
541                      CALL ZDSCAL( N, REC, X, 1 )
542                      SCALE = SCALE*REC
543                      XMAX = XMAX*REC
544                   END IF
545                   X( J ) = ZLADIV( X( J ), TJJS )
546                   XJ = CABS1( X( J ) )
547                ELSE
548 *
549 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
550 *                    scale = 0, and compute a solution to A*x = 0.
551 *
552                   DO 100 I = 1, N
553                      X( I ) = ZERO
554   100             CONTINUE
555                   X( J ) = ONE
556                   XJ = ONE
557                   SCALE = ZERO
558                   XMAX = ZERO
559                END IF
560   110          CONTINUE
561 *
562 *              Scale x if necessary to avoid overflow when adding a
563 *              multiple of column j of A.
564 *
565                IF( XJ.GT.ONE ) THEN
566                   REC = ONE / XJ
567                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
568 *
569 *                    Scale x by 1/(2*abs(x(j))).
570 *
571                      REC = REC*HALF
572                      CALL ZDSCAL( N, REC, X, 1 )
573                      SCALE = SCALE*REC
574                   END IF
575                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
576 *
577 *                 Scale x by 1/2.
578 *
579                   CALL ZDSCAL( N, HALF, X, 1 )
580                   SCALE = SCALE*HALF
581                END IF
582 *
583                IF( UPPER ) THEN
584                   IF( J.GT.1 ) THEN
585 *
586 *                    Compute the update
587 *                       x(max(1,j-kd):j-1) := x(max(1,j-kd):j-1) -
588 *                                             x(j)* A(max(1,j-kd):j-1,j)
589 *
590                      JLEN = MIN( KD, J-1 )
591                      CALL ZAXPY( JLEN, -X( J )*TSCAL,
592      $                           AB( KD+1-JLEN, J ), 1, X( J-JLEN ), 1 )
593                      I = IZAMAX( J-1, X, 1 )
594                      XMAX = CABS1( X( I ) )
595                   END IF
596                ELSE IF( J.LT.N ) THEN
597 *
598 *                 Compute the update
599 *                    x(j+1:min(j+kd,n)) := x(j+1:min(j+kd,n)) -
600 *                                          x(j) * A(j+1:min(j+kd,n),j)
601 *
602                   JLEN = MIN( KD, N-J )
603                   IF( JLEN.GT.0 )
604      $               CALL ZAXPY( JLEN, -X( J )*TSCAL, AB( 2, J ), 1,
605      $                           X( J+1 ), 1 )
606                   I = J + IZAMAX( N-J, X( J+1 ), 1 )
607                   XMAX = CABS1( X( I ) )
608                END IF
609   120       CONTINUE
610 *
611          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
612 *
613 *           Solve A**T * x = b
614 *
615             DO 170 J = JFIRST, JLAST, JINC
616 *
617 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
618 *                                    k<>j
619 *
620                XJ = CABS1( X( J ) )
621                USCAL = TSCAL
622                REC = ONE / MAX( XMAX, ONE )
623                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
624 *
625 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
626 *
627                   REC = REC*HALF
628                   IF( NOUNIT ) THEN
629                      TJJS = AB( MAIND, J )*TSCAL
630                   ELSE
631                      TJJS = TSCAL
632                   END IF
633                   TJJ = CABS1( TJJS )
634                   IF( TJJ.GT.ONE ) THEN
635 *
636 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
637 *
638                      REC = MIN( ONE, REC*TJJ )
639                      USCAL = ZLADIV( USCAL, TJJS )
640                   END IF
641                   IFREC.LT.ONE ) THEN
642                      CALL ZDSCAL( N, REC, X, 1 )
643                      SCALE = SCALE*REC
644                      XMAX = XMAX*REC
645                   END IF
646                END IF
647 *
648                CSUMJ = ZERO
649                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
650 *
651 *                 If the scaling needed for A in the dot product is 1,
652 *                 call ZDOTU to perform the dot product.
653 *
654                   IF( UPPER ) THEN
655                      JLEN = MIN( KD, J-1 )
656                      CSUMJ = ZDOTU( JLEN, AB( KD+1-JLEN, J ), 1,
657      $                       X( J-JLEN ), 1 )
658                   ELSE
659                      JLEN = MIN( KD, N-J )
660                      IF( JLEN.GT.1 )
661      $                  CSUMJ = ZDOTU( JLEN, AB( 2, J ), 1, X( J+1 ),
662      $                          1 )
663                   END IF
664                ELSE
665 *
666 *                 Otherwise, use in-line code for the dot product.
667 *
668                   IF( UPPER ) THEN
669                      JLEN = MIN( KD, J-1 )
670                      DO 130 I = 1, JLEN
671                         CSUMJ = CSUMJ + ( AB( KD+I-JLEN, J )*USCAL )*
672      $                          X( J-JLEN-1+I )
673   130                CONTINUE
674                   ELSE
675                      JLEN = MIN( KD, N-J )
676                      DO 140 I = 1, JLEN
677                         CSUMJ = CSUMJ + ( AB( I+1, J )*USCAL )*X( J+I )
678   140                CONTINUE
679                   END IF
680                END IF
681 *
682                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
683 *
684 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
685 *                 was not used to scale the dotproduct.
686 *
687                   X( J ) = X( J ) - CSUMJ
688                   XJ = CABS1( X( J ) )
689                   IF( NOUNIT ) THEN
690 *
691 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
692 *
693                      TJJS = AB( MAIND, J )*TSCAL
694                   ELSE
695                      TJJS = TSCAL
696                      IF( TSCAL.EQ.ONE )
697      $                  GO TO 160
698                   END IF
699                   TJJ = CABS1( TJJS )
700                   IF( TJJ.GT.SMLNUM ) THEN
701 *
702 *                       abs(A(j,j)) > SMLNUM:
703 *
704                      IF( TJJ.LT.ONE ) THEN
705                         IF( XJ.GT.TJJ*BIGNUM ) THEN
706 *
707 *                             Scale X by 1/abs(x(j)).
708 *
709                            REC = ONE / XJ
710                            CALL ZDSCAL( N, REC, X, 1 )
711                            SCALE = SCALE*REC
712                            XMAX = XMAX*REC
713                         END IF
714                      END IF
715                      X( J ) = ZLADIV( X( J ), TJJS )
716                   ELSE IF( TJJ.GT.ZERO ) THEN
717 *
718 *                       0 < abs(A(j,j)) <= SMLNUM:
719 *
720                      IF( XJ.GT.TJJ*BIGNUM ) THEN
721 *
722 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
723 *
724                         REC = ( TJJ*BIGNUM ) / XJ
725                         CALL ZDSCAL( N, REC, X, 1 )
726                         SCALE = SCALE*REC
727                         XMAX = XMAX*REC
728                      END IF
729                      X( J ) = ZLADIV( X( J ), TJJS )
730                   ELSE
731 *
732 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
733 *                       scale = 0 and compute a solution to A**T *x = 0.
734 *
735                      DO 150 I = 1, N
736                         X( I ) = ZERO
737   150                CONTINUE
738                      X( J ) = ONE
739                      SCALE = ZERO
740                      XMAX = ZERO
741                   END IF
742   160             CONTINUE
743                ELSE
744 *
745 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
746 *                 product has already been divided by 1/A(j,j).
747 *
748                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
749                END IF
750                XMAX = MAX( XMAX, CABS1( X( J ) ) )
751   170       CONTINUE
752 *
753          ELSE
754 *
755 *           Solve A**H * x = b
756 *
757             DO 220 J = JFIRST, JLAST, JINC
758 *
759 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
760 *                                    k<>j
761 *
762                XJ = CABS1( X( J ) )
763                USCAL = TSCAL
764                REC = ONE / MAX( XMAX, ONE )
765                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
766 *
767 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
768 *
769                   REC = REC*HALF
770                   IF( NOUNIT ) THEN
771                      TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
772                   ELSE
773                      TJJS = TSCAL
774                   END IF
775                   TJJ = CABS1( TJJS )
776                   IF( TJJ.GT.ONE ) THEN
777 *
778 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
779 *
780                      REC = MIN( ONE, REC*TJJ )
781                      USCAL = ZLADIV( USCAL, TJJS )
782                   END IF
783                   IFREC.LT.ONE ) THEN
784                      CALL ZDSCAL( N, REC, X, 1 )
785                      SCALE = SCALE*REC
786                      XMAX = XMAX*REC
787                   END IF
788                END IF
789 *
790                CSUMJ = ZERO
791                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
792 *
793 *                 If the scaling needed for A in the dot product is 1,
794 *                 call ZDOTC to perform the dot product.
795 *
796                   IF( UPPER ) THEN
797                      JLEN = MIN( KD, J-1 )
798                      CSUMJ = ZDOTC( JLEN, AB( KD+1-JLEN, J ), 1,
799      $                       X( J-JLEN ), 1 )
800                   ELSE
801                      JLEN = MIN( KD, N-J )
802                      IF( JLEN.GT.1 )
803      $                  CSUMJ = ZDOTC( JLEN, AB( 2, J ), 1, X( J+1 ),
804      $                          1 )
805                   END IF
806                ELSE
807 *
808 *                 Otherwise, use in-line code for the dot product.
809 *
810                   IF( UPPER ) THEN
811                      JLEN = MIN( KD, J-1 )
812                      DO 180 I = 1, JLEN
813                         CSUMJ = CSUMJ + ( DCONJG( AB( KD+I-JLEN, J ) )*
814      $                          USCAL )*X( J-JLEN-1+I )
815   180                CONTINUE
816                   ELSE
817                      JLEN = MIN( KD, N-J )
818                      DO 190 I = 1, JLEN
819                         CSUMJ = CSUMJ + ( DCONJG( AB( I+1, J ) )*USCAL )
820      $                          *X( J+I )
821   190                CONTINUE
822                   END IF
823                END IF
824 *
825                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
826 *
827 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
828 *                 was not used to scale the dotproduct.
829 *
830                   X( J ) = X( J ) - CSUMJ
831                   XJ = CABS1( X( J ) )
832                   IF( NOUNIT ) THEN
833 *
834 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
835 *
836                      TJJS = DCONJG( AB( MAIND, J ) )*TSCAL
837                   ELSE
838                      TJJS = TSCAL
839                      IF( TSCAL.EQ.ONE )
840      $                  GO TO 210
841                   END IF
842                   TJJ = CABS1( TJJS )
843                   IF( TJJ.GT.SMLNUM ) THEN
844 *
845 *                       abs(A(j,j)) > SMLNUM:
846 *
847                      IF( TJJ.LT.ONE ) THEN
848                         IF( XJ.GT.TJJ*BIGNUM ) THEN
849 *
850 *                             Scale X by 1/abs(x(j)).
851 *
852                            REC = ONE / XJ
853                            CALL ZDSCAL( N, REC, X, 1 )
854                            SCALE = SCALE*REC
855                            XMAX = XMAX*REC
856                         END IF
857                      END IF
858                      X( J ) = ZLADIV( X( J ), TJJS )
859                   ELSE IF( TJJ.GT.ZERO ) THEN
860 *
861 *                       0 < abs(A(j,j)) <= SMLNUM:
862 *
863                      IF( XJ.GT.TJJ*BIGNUM ) THEN
864 *
865 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
866 *
867                         REC = ( TJJ*BIGNUM ) / XJ
868                         CALL ZDSCAL( N, REC, X, 1 )
869                         SCALE = SCALE*REC
870                         XMAX = XMAX*REC
871                      END IF
872                      X( J ) = ZLADIV( X( J ), TJJS )
873                   ELSE
874 *
875 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
876 *                       scale = 0 and compute a solution to A**H *x = 0.
877 *
878                      DO 200 I = 1, N
879                         X( I ) = ZERO
880   200                CONTINUE
881                      X( J ) = ONE
882                      SCALE = ZERO
883                      XMAX = ZERO
884                   END IF
885   210             CONTINUE
886                ELSE
887 *
888 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
889 *                 product has already been divided by 1/A(j,j).
890 *
891                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
892                END IF
893                XMAX = MAX( XMAX, CABS1( X( J ) ) )
894   220       CONTINUE
895          END IF
896          SCALE = SCALE / TSCAL
897       END IF
898 *
899 *     Scale the column norms by 1/TSCAL for return.
900 *
901       IF( TSCAL.NE.ONE ) THEN
902          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
903       END IF
904 *
905       RETURN
906 *
907 *     End of ZLATBS
908 *
909       END