1       SUBROUTINE ZLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
  2      $                   CNORM, INFO )
  3 *
  4 *  -- LAPACK auxiliary routine (version 3.2) --
  5 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  6 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  7 *     November 2006
  8 *
  9 *     .. Scalar Arguments ..
 10       CHARACTER          DIAG, NORMIN, TRANS, UPLO
 11       INTEGER            INFO, LDA, N
 12       DOUBLE PRECISION   SCALE
 13 *     ..
 14 *     .. Array Arguments ..
 15       DOUBLE PRECISION   CNORM( * )
 16       COMPLEX*16         A( LDA, * ), X( * )
 17 *     ..
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZLATRS solves one of the triangular systems
 23 *
 24 *     A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
 25 *
 26 *  with scaling to prevent overflow.  Here A is an upper or lower
 27 *  triangular matrix, A**T denotes the transpose of A, A**H denotes the
 28 *  conjugate transpose of A, x and b are n-element vectors, and s is a
 29 *  scaling factor, usually less than or equal to 1, chosen so that the
 30 *  components of x will be less than the overflow threshold.  If the
 31 *  unscaled problem will not cause overflow, the Level 2 BLAS routine
 32 *  ZTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
 33 *  then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
 34 *
 35 *  Arguments
 36 *  =========
 37 *
 38 *  UPLO    (input) CHARACTER*1
 39 *          Specifies whether the matrix A is upper or lower triangular.
 40 *          = 'U':  Upper triangular
 41 *          = 'L':  Lower triangular
 42 *
 43 *  TRANS   (input) CHARACTER*1
 44 *          Specifies the operation applied to A.
 45 *          = 'N':  Solve A * x = s*b     (No transpose)
 46 *          = 'T':  Solve A**T * x = s*b  (Transpose)
 47 *          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
 48 *
 49 *  DIAG    (input) CHARACTER*1
 50 *          Specifies whether or not the matrix A is unit triangular.
 51 *          = 'N':  Non-unit triangular
 52 *          = 'U':  Unit triangular
 53 *
 54 *  NORMIN  (input) CHARACTER*1
 55 *          Specifies whether CNORM has been set or not.
 56 *          = 'Y':  CNORM contains the column norms on entry
 57 *          = 'N':  CNORM is not set on entry.  On exit, the norms will
 58 *                  be computed and stored in CNORM.
 59 *
 60 *  N       (input) INTEGER
 61 *          The order of the matrix A.  N >= 0.
 62 *
 63 *  A       (input) COMPLEX*16 array, dimension (LDA,N)
 64 *          The triangular matrix A.  If UPLO = 'U', the leading n by n
 65 *          upper triangular part of the array A contains the upper
 66 *          triangular matrix, and the strictly lower triangular part of
 67 *          A is not referenced.  If UPLO = 'L', the leading n by n lower
 68 *          triangular part of the array A contains the lower triangular
 69 *          matrix, and the strictly upper triangular part of A is not
 70 *          referenced.  If DIAG = 'U', the diagonal elements of A are
 71 *          also not referenced and are assumed to be 1.
 72 *
 73 *  LDA     (input) INTEGER
 74 *          The leading dimension of the array A.  LDA >= max (1,N).
 75 *
 76 *  X       (input/output) COMPLEX*16 array, dimension (N)
 77 *          On entry, the right hand side b of the triangular system.
 78 *          On exit, X is overwritten by the solution vector x.
 79 *
 80 *  SCALE   (output) DOUBLE PRECISION
 81 *          The scaling factor s for the triangular system
 82 *             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
 83 *          If SCALE = 0, the matrix A is singular or badly scaled, and
 84 *          the vector x is an exact or approximate solution to A*x = 0.
 85 *
 86 *  CNORM   (input or output) DOUBLE PRECISION array, dimension (N)
 87 *
 88 *          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
 89 *          contains the norm of the off-diagonal part of the j-th column
 90 *          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
 91 *          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
 92 *          must be greater than or equal to the 1-norm.
 93 *
 94 *          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
 95 *          returns the 1-norm of the offdiagonal part of the j-th column
 96 *          of A.
 97 *
 98 *  INFO    (output) INTEGER
 99 *          = 0:  successful exit
100 *          < 0:  if INFO = -k, the k-th argument had an illegal value
101 *
102 *  Further Details
103 *  ======= =======
104 *
105 *  A rough bound on x is computed; if that is less than overflow, ZTRSV
106 *  is called, otherwise, specific code is used which checks for possible
107 *  overflow or divide-by-zero at every operation.
108 *
109 *  A columnwise scheme is used for solving A*x = b.  The basic algorithm
110 *  if A is lower triangular is
111 *
112 *       x[1:n] := b[1:n]
113 *       for j = 1, ..., n
114 *            x(j) := x(j) / A(j,j)
115 *            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
116 *       end
117 *
118 *  Define bounds on the components of x after j iterations of the loop:
119 *     M(j) = bound on x[1:j]
120 *     G(j) = bound on x[j+1:n]
121 *  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
122 *
123 *  Then for iteration j+1 we have
124 *     M(j+1) <= G(j) / | A(j+1,j+1) |
125 *     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
126 *            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
127 *
128 *  where CNORM(j+1) is greater than or equal to the infinity-norm of
129 *  column j+1 of A, not counting the diagonal.  Hence
130 *
131 *     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
132 *                  1<=i<=j
133 *  and
134 *
135 *     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
136 *                                   1<=i< j
137 *
138 *  Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTRSV if the
139 *  reciprocal of the largest M(j), j=1,..,n, is larger than
140 *  max(underflow, 1/overflow).
141 *
142 *  The bound on x(j) is also used to determine when a step in the
143 *  columnwise method can be performed without fear of overflow.  If
144 *  the computed bound is greater than a large constant, x is scaled to
145 *  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
146 *  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
147 *
148 *  Similarly, a row-wise scheme is used to solve A**T *x = b  or
149 *  A**H *x = b.  The basic algorithm for A upper triangular is
150 *
151 *       for j = 1, ..., n
152 *            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
153 *       end
154 *
155 *  We simultaneously compute two bounds
156 *       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
157 *       M(j) = bound on x(i), 1<=i<=j
158 *
159 *  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
160 *  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
161 *  Then the bound on x(j) is
162 *
163 *       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
164 *
165 *            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
166 *                      1<=i<=j
167 *
168 *  and we can safely call ZTRSV if 1/M(n) and 1/G(n) are both greater
169 *  than max(underflow, 1/overflow).
170 *
171 *  =====================================================================
172 *
173 *     .. Parameters ..
174       DOUBLE PRECISION   ZERO, HALF, ONE, TWO
175       PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
176      $                   TWO = 2.0D+0 )
177 *     ..
178 *     .. Local Scalars ..
179       LOGICAL            NOTRAN, NOUNIT, UPPER
180       INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
181       DOUBLE PRECISION   BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
182      $                   XBND, XJ, XMAX
183       COMPLEX*16         CSUMJ, TJJS, USCAL, ZDUM
184 *     ..
185 *     .. External Functions ..
186       LOGICAL            LSAME
187       INTEGER            IDAMAX, IZAMAX
188       DOUBLE PRECISION   DLAMCH, DZASUM
189       COMPLEX*16         ZDOTC, ZDOTU, ZLADIV
190       EXTERNAL           LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
191      $                   ZDOTU, ZLADIV
192 *     ..
193 *     .. External Subroutines ..
194       EXTERNAL           DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTRSV
195 *     ..
196 *     .. Intrinsic Functions ..
197       INTRINSIC          ABSDBLEDCMPLXDCONJGDIMAGMAXMIN
198 *     ..
199 *     .. Statement Functions ..
200       DOUBLE PRECISION   CABS1, CABS2
201 *     ..
202 *     .. Statement Function definitions ..
203       CABS1( ZDUM ) = ABSDBLE( ZDUM ) ) + ABSDIMAG( ZDUM ) )
204       CABS2( ZDUM ) = ABSDBLE( ZDUM ) / 2.D0 ) +
205      $                ABSDIMAG( ZDUM ) / 2.D0 )
206 *     ..
207 *     .. Executable Statements ..
208 *
209       INFO = 0
210       UPPER = LSAME( UPLO, 'U' )
211       NOTRAN = LSAME( TRANS, 'N' )
212       NOUNIT = LSAME( DIAG, 'N' )
213 *
214 *     Test the input parameters.
215 *
216       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
217          INFO = -1
218       ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
219      $         LSAME( TRANS, 'C' ) ) THEN
220          INFO = -2
221       ELSE IF.NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
222          INFO = -3
223       ELSE IF.NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
224      $         LSAME( NORMIN, 'N' ) ) THEN
225          INFO = -4
226       ELSE IF( N.LT.0 ) THEN
227          INFO = -5
228       ELSE IF( LDA.LT.MAX1, N ) ) THEN
229          INFO = -7
230       END IF
231       IF( INFO.NE.0 ) THEN
232          CALL XERBLA( 'ZLATRS'-INFO )
233          RETURN
234       END IF
235 *
236 *     Quick return if possible
237 *
238       IF( N.EQ.0 )
239      $   RETURN
240 *
241 *     Determine machine dependent parameters to control overflow.
242 *
243       SMLNUM = DLAMCH( 'Safe minimum' )
244       BIGNUM = ONE / SMLNUM
245       CALL DLABAD( SMLNUM, BIGNUM )
246       SMLNUM = SMLNUM / DLAMCH( 'Precision' )
247       BIGNUM = ONE / SMLNUM
248       SCALE = ONE
249 *
250       IF( LSAME( NORMIN, 'N' ) ) THEN
251 *
252 *        Compute the 1-norm of each column, not including the diagonal.
253 *
254          IF( UPPER ) THEN
255 *
256 *           A is upper triangular.
257 *
258             DO 10 J = 1, N
259                CNORM( J ) = DZASUM( J-1, A( 1, J ), 1 )
260    10       CONTINUE
261          ELSE
262 *
263 *           A is lower triangular.
264 *
265             DO 20 J = 1, N - 1
266                CNORM( J ) = DZASUM( N-J, A( J+1, J ), 1 )
267    20       CONTINUE
268             CNORM( N ) = ZERO
269          END IF
270       END IF
271 *
272 *     Scale the column norms by TSCAL if the maximum element in CNORM is
273 *     greater than BIGNUM/2.
274 *
275       IMAX = IDAMAX( N, CNORM, 1 )
276       TMAX = CNORM( IMAX )
277       IF( TMAX.LE.BIGNUM*HALF ) THEN
278          TSCAL = ONE
279       ELSE
280          TSCAL = HALF / ( SMLNUM*TMAX )
281          CALL DSCAL( N, TSCAL, CNORM, 1 )
282       END IF
283 *
284 *     Compute a bound on the computed solution vector to see if the
285 *     Level 2 BLAS routine ZTRSV can be used.
286 *
287       XMAX = ZERO
288       DO 30 J = 1, N
289          XMAX = MAX( XMAX, CABS2( X( J ) ) )
290    30 CONTINUE
291       XBND = XMAX
292 *
293       IF( NOTRAN ) THEN
294 *
295 *        Compute the growth in A * x = b.
296 *
297          IF( UPPER ) THEN
298             JFIRST = N
299             JLAST = 1
300             JINC = -1
301          ELSE
302             JFIRST = 1
303             JLAST = N
304             JINC = 1
305          END IF
306 *
307          IF( TSCAL.NE.ONE ) THEN
308             GROW = ZERO
309             GO TO 60
310          END IF
311 *
312          IF( NOUNIT ) THEN
313 *
314 *           A is non-unit triangular.
315 *
316 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
317 *           Initially, G(0) = max{x(i), i=1,...,n}.
318 *
319             GROW = HALF / MAX( XBND, SMLNUM )
320             XBND = GROW
321             DO 40 J = JFIRST, JLAST, JINC
322 *
323 *              Exit the loop if the growth factor is too small.
324 *
325                IF( GROW.LE.SMLNUM )
326      $            GO TO 60
327 *
328                TJJS = A( J, J )
329                TJJ = CABS1( TJJS )
330 *
331                IF( TJJ.GE.SMLNUM ) THEN
332 *
333 *                 M(j) = G(j-1) / abs(A(j,j))
334 *
335                   XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
336                ELSE
337 *
338 *                 M(j) could overflow, set XBND to 0.
339 *
340                   XBND = ZERO
341                END IF
342 *
343                IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
344 *
345 *                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
346 *
347                   GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
348                ELSE
349 *
350 *                 G(j) could overflow, set GROW to 0.
351 *
352                   GROW = ZERO
353                END IF
354    40       CONTINUE
355             GROW = XBND
356          ELSE
357 *
358 *           A is unit triangular.
359 *
360 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
361 *
362             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
363             DO 50 J = JFIRST, JLAST, JINC
364 *
365 *              Exit the loop if the growth factor is too small.
366 *
367                IF( GROW.LE.SMLNUM )
368      $            GO TO 60
369 *
370 *              G(j) = G(j-1)*( 1 + CNORM(j) )
371 *
372                GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
373    50       CONTINUE
374          END IF
375    60    CONTINUE
376 *
377       ELSE
378 *
379 *        Compute the growth in A**T * x = b  or  A**H * x = b.
380 *
381          IF( UPPER ) THEN
382             JFIRST = 1
383             JLAST = N
384             JINC = 1
385          ELSE
386             JFIRST = N
387             JLAST = 1
388             JINC = -1
389          END IF
390 *
391          IF( TSCAL.NE.ONE ) THEN
392             GROW = ZERO
393             GO TO 90
394          END IF
395 *
396          IF( NOUNIT ) THEN
397 *
398 *           A is non-unit triangular.
399 *
400 *           Compute GROW = 1/G(j) and XBND = 1/M(j).
401 *           Initially, M(0) = max{x(i), i=1,...,n}.
402 *
403             GROW = HALF / MAX( XBND, SMLNUM )
404             XBND = GROW
405             DO 70 J = JFIRST, JLAST, JINC
406 *
407 *              Exit the loop if the growth factor is too small.
408 *
409                IF( GROW.LE.SMLNUM )
410      $            GO TO 90
411 *
412 *              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
413 *
414                XJ = ONE + CNORM( J )
415                GROW = MIN( GROW, XBND / XJ )
416 *
417                TJJS = A( J, J )
418                TJJ = CABS1( TJJS )
419 *
420                IF( TJJ.GE.SMLNUM ) THEN
421 *
422 *                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
423 *
424                   IF( XJ.GT.TJJ )
425      $               XBND = XBND*( TJJ / XJ )
426                ELSE
427 *
428 *                 M(j) could overflow, set XBND to 0.
429 *
430                   XBND = ZERO
431                END IF
432    70       CONTINUE
433             GROW = MIN( GROW, XBND )
434          ELSE
435 *
436 *           A is unit triangular.
437 *
438 *           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
439 *
440             GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
441             DO 80 J = JFIRST, JLAST, JINC
442 *
443 *              Exit the loop if the growth factor is too small.
444 *
445                IF( GROW.LE.SMLNUM )
446      $            GO TO 90
447 *
448 *              G(j) = ( 1 + CNORM(j) )*G(j-1)
449 *
450                XJ = ONE + CNORM( J )
451                GROW = GROW / XJ
452    80       CONTINUE
453          END IF
454    90    CONTINUE
455       END IF
456 *
457       IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
458 *
459 *        Use the Level 2 BLAS solve if the reciprocal of the bound on
460 *        elements of X is not too small.
461 *
462          CALL ZTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
463       ELSE
464 *
465 *        Use a Level 1 BLAS solve, scaling intermediate results.
466 *
467          IF( XMAX.GT.BIGNUM*HALF ) THEN
468 *
469 *           Scale X so that its components are less than or equal to
470 *           BIGNUM in absolute value.
471 *
472             SCALE = ( BIGNUM*HALF ) / XMAX
473             CALL ZDSCAL( N, SCALE, X, 1 )
474             XMAX = BIGNUM
475          ELSE
476             XMAX = XMAX*TWO
477          END IF
478 *
479          IF( NOTRAN ) THEN
480 *
481 *           Solve A * x = b
482 *
483             DO 120 J = JFIRST, JLAST, JINC
484 *
485 *              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
486 *
487                XJ = CABS1( X( J ) )
488                IF( NOUNIT ) THEN
489                   TJJS = A( J, J )*TSCAL
490                ELSE
491                   TJJS = TSCAL
492                   IF( TSCAL.EQ.ONE )
493      $               GO TO 110
494                END IF
495                TJJ = CABS1( TJJS )
496                IF( TJJ.GT.SMLNUM ) THEN
497 *
498 *                    abs(A(j,j)) > SMLNUM:
499 *
500                   IF( TJJ.LT.ONE ) THEN
501                      IF( XJ.GT.TJJ*BIGNUM ) THEN
502 *
503 *                          Scale x by 1/b(j).
504 *
505                         REC = ONE / XJ
506                         CALL ZDSCAL( N, REC, X, 1 )
507                         SCALE = SCALE*REC
508                         XMAX = XMAX*REC
509                      END IF
510                   END IF
511                   X( J ) = ZLADIV( X( J ), TJJS )
512                   XJ = CABS1( X( J ) )
513                ELSE IF( TJJ.GT.ZERO ) THEN
514 *
515 *                    0 < abs(A(j,j)) <= SMLNUM:
516 *
517                   IF( XJ.GT.TJJ*BIGNUM ) THEN
518 *
519 *                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
520 *                       to avoid overflow when dividing by A(j,j).
521 *
522                      REC = ( TJJ*BIGNUM ) / XJ
523                      IF( CNORM( J ).GT.ONE ) THEN
524 *
525 *                          Scale by 1/CNORM(j) to avoid overflow when
526 *                          multiplying x(j) times column j.
527 *
528                         REC = REC / CNORM( J )
529                      END IF
530                      CALL ZDSCAL( N, REC, X, 1 )
531                      SCALE = SCALE*REC
532                      XMAX = XMAX*REC
533                   END IF
534                   X( J ) = ZLADIV( X( J ), TJJS )
535                   XJ = CABS1( X( J ) )
536                ELSE
537 *
538 *                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
539 *                    scale = 0, and compute a solution to A*x = 0.
540 *
541                   DO 100 I = 1, N
542                      X( I ) = ZERO
543   100             CONTINUE
544                   X( J ) = ONE
545                   XJ = ONE
546                   SCALE = ZERO
547                   XMAX = ZERO
548                END IF
549   110          CONTINUE
550 *
551 *              Scale x if necessary to avoid overflow when adding a
552 *              multiple of column j of A.
553 *
554                IF( XJ.GT.ONE ) THEN
555                   REC = ONE / XJ
556                   IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
557 *
558 *                    Scale x by 1/(2*abs(x(j))).
559 *
560                      REC = REC*HALF
561                      CALL ZDSCAL( N, REC, X, 1 )
562                      SCALE = SCALE*REC
563                   END IF
564                ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
565 *
566 *                 Scale x by 1/2.
567 *
568                   CALL ZDSCAL( N, HALF, X, 1 )
569                   SCALE = SCALE*HALF
570                END IF
571 *
572                IF( UPPER ) THEN
573                   IF( J.GT.1 ) THEN
574 *
575 *                    Compute the update
576 *                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
577 *
578                      CALL ZAXPY( J-1-X( J )*TSCAL, A( 1, J ), 1, X,
579      $                           1 )
580                      I = IZAMAX( J-1, X, 1 )
581                      XMAX = CABS1( X( I ) )
582                   END IF
583                ELSE
584                   IF( J.LT.N ) THEN
585 *
586 *                    Compute the update
587 *                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
588 *
589                      CALL ZAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
590      $                           X( J+1 ), 1 )
591                      I = J + IZAMAX( N-J, X( J+1 ), 1 )
592                      XMAX = CABS1( X( I ) )
593                   END IF
594                END IF
595   120       CONTINUE
596 *
597          ELSE IF( LSAME( TRANS, 'T' ) ) THEN
598 *
599 *           Solve A**T * x = b
600 *
601             DO 170 J = JFIRST, JLAST, JINC
602 *
603 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
604 *                                    k<>j
605 *
606                XJ = CABS1( X( J ) )
607                USCAL = TSCAL
608                REC = ONE / MAX( XMAX, ONE )
609                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
610 *
611 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
612 *
613                   REC = REC*HALF
614                   IF( NOUNIT ) THEN
615                      TJJS = A( J, J )*TSCAL
616                   ELSE
617                      TJJS = TSCAL
618                   END IF
619                   TJJ = CABS1( TJJS )
620                   IF( TJJ.GT.ONE ) THEN
621 *
622 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
623 *
624                      REC = MIN( ONE, REC*TJJ )
625                      USCAL = ZLADIV( USCAL, TJJS )
626                   END IF
627                   IFREC.LT.ONE ) THEN
628                      CALL ZDSCAL( N, REC, X, 1 )
629                      SCALE = SCALE*REC
630                      XMAX = XMAX*REC
631                   END IF
632                END IF
633 *
634                CSUMJ = ZERO
635                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
636 *
637 *                 If the scaling needed for A in the dot product is 1,
638 *                 call ZDOTU to perform the dot product.
639 *
640                   IF( UPPER ) THEN
641                      CSUMJ = ZDOTU( J-1, A( 1, J ), 1, X, 1 )
642                   ELSE IF( J.LT.N ) THEN
643                      CSUMJ = ZDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
644                   END IF
645                ELSE
646 *
647 *                 Otherwise, use in-line code for the dot product.
648 *
649                   IF( UPPER ) THEN
650                      DO 130 I = 1, J - 1
651                         CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
652   130                CONTINUE
653                   ELSE IF( J.LT.N ) THEN
654                      DO 140 I = J + 1, N
655                         CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
656   140                CONTINUE
657                   END IF
658                END IF
659 *
660                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
661 *
662 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
663 *                 was not used to scale the dotproduct.
664 *
665                   X( J ) = X( J ) - CSUMJ
666                   XJ = CABS1( X( J ) )
667                   IF( NOUNIT ) THEN
668                      TJJS = A( J, J )*TSCAL
669                   ELSE
670                      TJJS = TSCAL
671                      IF( TSCAL.EQ.ONE )
672      $                  GO TO 160
673                   END IF
674 *
675 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
676 *
677                   TJJ = CABS1( TJJS )
678                   IF( TJJ.GT.SMLNUM ) THEN
679 *
680 *                       abs(A(j,j)) > SMLNUM:
681 *
682                      IF( TJJ.LT.ONE ) THEN
683                         IF( XJ.GT.TJJ*BIGNUM ) THEN
684 *
685 *                             Scale X by 1/abs(x(j)).
686 *
687                            REC = ONE / XJ
688                            CALL ZDSCAL( N, REC, X, 1 )
689                            SCALE = SCALE*REC
690                            XMAX = XMAX*REC
691                         END IF
692                      END IF
693                      X( J ) = ZLADIV( X( J ), TJJS )
694                   ELSE IF( TJJ.GT.ZERO ) THEN
695 *
696 *                       0 < abs(A(j,j)) <= SMLNUM:
697 *
698                      IF( XJ.GT.TJJ*BIGNUM ) THEN
699 *
700 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
701 *
702                         REC = ( TJJ*BIGNUM ) / XJ
703                         CALL ZDSCAL( N, REC, X, 1 )
704                         SCALE = SCALE*REC
705                         XMAX = XMAX*REC
706                      END IF
707                      X( J ) = ZLADIV( X( J ), TJJS )
708                   ELSE
709 *
710 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
711 *                       scale = 0 and compute a solution to A**T *x = 0.
712 *
713                      DO 150 I = 1, N
714                         X( I ) = ZERO
715   150                CONTINUE
716                      X( J ) = ONE
717                      SCALE = ZERO
718                      XMAX = ZERO
719                   END IF
720   160             CONTINUE
721                ELSE
722 *
723 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
724 *                 product has already been divided by 1/A(j,j).
725 *
726                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
727                END IF
728                XMAX = MAX( XMAX, CABS1( X( J ) ) )
729   170       CONTINUE
730 *
731          ELSE
732 *
733 *           Solve A**H * x = b
734 *
735             DO 220 J = JFIRST, JLAST, JINC
736 *
737 *              Compute x(j) = b(j) - sum A(k,j)*x(k).
738 *                                    k<>j
739 *
740                XJ = CABS1( X( J ) )
741                USCAL = TSCAL
742                REC = ONE / MAX( XMAX, ONE )
743                IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
744 *
745 *                 If x(j) could overflow, scale x by 1/(2*XMAX).
746 *
747                   REC = REC*HALF
748                   IF( NOUNIT ) THEN
749                      TJJS = DCONJG( A( J, J ) )*TSCAL
750                   ELSE
751                      TJJS = TSCAL
752                   END IF
753                   TJJ = CABS1( TJJS )
754                   IF( TJJ.GT.ONE ) THEN
755 *
756 *                       Divide by A(j,j) when scaling x if A(j,j) > 1.
757 *
758                      REC = MIN( ONE, REC*TJJ )
759                      USCAL = ZLADIV( USCAL, TJJS )
760                   END IF
761                   IFREC.LT.ONE ) THEN
762                      CALL ZDSCAL( N, REC, X, 1 )
763                      SCALE = SCALE*REC
764                      XMAX = XMAX*REC
765                   END IF
766                END IF
767 *
768                CSUMJ = ZERO
769                IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
770 *
771 *                 If the scaling needed for A in the dot product is 1,
772 *                 call ZDOTC to perform the dot product.
773 *
774                   IF( UPPER ) THEN
775                      CSUMJ = ZDOTC( J-1, A( 1, J ), 1, X, 1 )
776                   ELSE IF( J.LT.N ) THEN
777                      CSUMJ = ZDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
778                   END IF
779                ELSE
780 *
781 *                 Otherwise, use in-line code for the dot product.
782 *
783                   IF( UPPER ) THEN
784                      DO 180 I = 1, J - 1
785                         CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
786      $                          X( I )
787   180                CONTINUE
788                   ELSE IF( J.LT.N ) THEN
789                      DO 190 I = J + 1, N
790                         CSUMJ = CSUMJ + ( DCONJG( A( I, J ) )*USCAL )*
791      $                          X( I )
792   190                CONTINUE
793                   END IF
794                END IF
795 *
796                IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
797 *
798 *                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
799 *                 was not used to scale the dotproduct.
800 *
801                   X( J ) = X( J ) - CSUMJ
802                   XJ = CABS1( X( J ) )
803                   IF( NOUNIT ) THEN
804                      TJJS = DCONJG( A( J, J ) )*TSCAL
805                   ELSE
806                      TJJS = TSCAL
807                      IF( TSCAL.EQ.ONE )
808      $                  GO TO 210
809                   END IF
810 *
811 *                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
812 *
813                   TJJ = CABS1( TJJS )
814                   IF( TJJ.GT.SMLNUM ) THEN
815 *
816 *                       abs(A(j,j)) > SMLNUM:
817 *
818                      IF( TJJ.LT.ONE ) THEN
819                         IF( XJ.GT.TJJ*BIGNUM ) THEN
820 *
821 *                             Scale X by 1/abs(x(j)).
822 *
823                            REC = ONE / XJ
824                            CALL ZDSCAL( N, REC, X, 1 )
825                            SCALE = SCALE*REC
826                            XMAX = XMAX*REC
827                         END IF
828                      END IF
829                      X( J ) = ZLADIV( X( J ), TJJS )
830                   ELSE IF( TJJ.GT.ZERO ) THEN
831 *
832 *                       0 < abs(A(j,j)) <= SMLNUM:
833 *
834                      IF( XJ.GT.TJJ*BIGNUM ) THEN
835 *
836 *                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
837 *
838                         REC = ( TJJ*BIGNUM ) / XJ
839                         CALL ZDSCAL( N, REC, X, 1 )
840                         SCALE = SCALE*REC
841                         XMAX = XMAX*REC
842                      END IF
843                      X( J ) = ZLADIV( X( J ), TJJS )
844                   ELSE
845 *
846 *                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
847 *                       scale = 0 and compute a solution to A**H *x = 0.
848 *
849                      DO 200 I = 1, N
850                         X( I ) = ZERO
851   200                CONTINUE
852                      X( J ) = ONE
853                      SCALE = ZERO
854                      XMAX = ZERO
855                   END IF
856   210             CONTINUE
857                ELSE
858 *
859 *                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
860 *                 product has already been divided by 1/A(j,j).
861 *
862                   X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
863                END IF
864                XMAX = MAX( XMAX, CABS1( X( J ) ) )
865   220       CONTINUE
866          END IF
867          SCALE = SCALE / TSCAL
868       END IF
869 *
870 *     Scale the column norms by 1/TSCAL for return.
871 *
872       IF( TSCAL.NE.ONE ) THEN
873          CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
874       END IF
875 *
876       RETURN
877 *
878 *     End of ZLATRS
879 *
880       END