1       SUBROUTINE ZPBSTF( UPLO, N, KD, AB, LDAB, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.2) --
  4 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  5 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  6 *     November 2006
  7 *
  8 *     .. Scalar Arguments ..
  9       CHARACTER          UPLO
 10       INTEGER            INFO, KD, LDAB, N
 11 *     ..
 12 *     .. Array Arguments ..
 13       COMPLEX*16         AB( LDAB, * )
 14 *     ..
 15 *
 16 *  Purpose
 17 *  =======
 18 *
 19 *  ZPBSTF computes a split Cholesky factorization of a complex
 20 *  Hermitian positive definite band matrix A.
 21 *
 22 *  This routine is designed to be used in conjunction with ZHBGST.
 23 *
 24 *  The factorization has the form  A = S**H*S  where S is a band matrix
 25 *  of the same bandwidth as A and the following structure:
 26 *
 27 *    S = ( U    )
 28 *        ( M  L )
 29 *
 30 *  where U is upper triangular of order m = (n+kd)/2, and L is lower
 31 *  triangular of order n-m.
 32 *
 33 *  Arguments
 34 *  =========
 35 *
 36 *  UPLO    (input) CHARACTER*1
 37 *          = 'U':  Upper triangle of A is stored;
 38 *          = 'L':  Lower triangle of A is stored.
 39 *
 40 *  N       (input) INTEGER
 41 *          The order of the matrix A.  N >= 0.
 42 *
 43 *  KD      (input) INTEGER
 44 *          The number of superdiagonals of the matrix A if UPLO = 'U',
 45 *          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 46 *
 47 *  AB      (input/output) COMPLEX*16 array, dimension (LDAB,N)
 48 *          On entry, the upper or lower triangle of the Hermitian band
 49 *          matrix A, stored in the first kd+1 rows of the array.  The
 50 *          j-th column of A is stored in the j-th column of the array AB
 51 *          as follows:
 52 *          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 53 *          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 54 *
 55 *          On exit, if INFO = 0, the factor S from the split Cholesky
 56 *          factorization A = S**H*S. See Further Details.
 57 *
 58 *  LDAB    (input) INTEGER
 59 *          The leading dimension of the array AB.  LDAB >= KD+1.
 60 *
 61 *  INFO    (output) INTEGER
 62 *          = 0: successful exit
 63 *          < 0: if INFO = -i, the i-th argument had an illegal value
 64 *          > 0: if INFO = i, the factorization could not be completed,
 65 *               because the updated element a(i,i) was negative; the
 66 *               matrix A is not positive definite.
 67 *
 68 *  Further Details
 69 *  ===============
 70 *
 71 *  The band storage scheme is illustrated by the following example, when
 72 *  N = 7, KD = 2:
 73 *
 74 *  S = ( s11  s12  s13                     )
 75 *      (      s22  s23  s24                )
 76 *      (           s33  s34                )
 77 *      (                s44                )
 78 *      (           s53  s54  s55           )
 79 *      (                s64  s65  s66      )
 80 *      (                     s75  s76  s77 )
 81 *
 82 *  If UPLO = 'U', the array AB holds:
 83 *
 84 *  on entry:                          on exit:
 85 *
 86 *   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
 87 *   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
 88 *  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
 89 *
 90 *  If UPLO = 'L', the array AB holds:
 91 *
 92 *  on entry:                          on exit:
 93 *
 94 *  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
 95 *  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
 96 *  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
 97 *
 98 *  Array elements marked * are not used by the routine; s12**H denotes
 99 *  conjg(s12); the diagonal elements of S are real.
100 
101 *
102 *  =====================================================================
103 *
104 *     .. Parameters ..
105       DOUBLE PRECISION   ONE, ZERO
106       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
107 *     ..
108 *     .. Local Scalars ..
109       LOGICAL            UPPER
110       INTEGER            J, KLD, KM, M
111       DOUBLE PRECISION   AJJ
112 *     ..
113 *     .. External Functions ..
114       LOGICAL            LSAME
115       EXTERNAL           LSAME
116 *     ..
117 *     .. External Subroutines ..
118       EXTERNAL           XERBLA, ZDSCAL, ZHER, ZLACGV
119 *     ..
120 *     .. Intrinsic Functions ..
121       INTRINSIC          DBLEMAXMINSQRT
122 *     ..
123 *     .. Executable Statements ..
124 *
125 *     Test the input parameters.
126 *
127       INFO = 0
128       UPPER = LSAME( UPLO, 'U' )
129       IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
130          INFO = -1
131       ELSE IF( N.LT.0 ) THEN
132          INFO = -2
133       ELSE IF( KD.LT.0 ) THEN
134          INFO = -3
135       ELSE IF( LDAB.LT.KD+1 ) THEN
136          INFO = -5
137       END IF
138       IF( INFO.NE.0 ) THEN
139          CALL XERBLA( 'ZPBSTF'-INFO )
140          RETURN
141       END IF
142 *
143 *     Quick return if possible
144 *
145       IF( N.EQ.0 )
146      $   RETURN
147 *
148       KLD = MAX1, LDAB-1 )
149 *
150 *     Set the splitting point m.
151 *
152       M = ( N+KD ) / 2
153 *
154       IF( UPPER ) THEN
155 *
156 *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
157 *
158          DO 10 J = N, M + 1-1
159 *
160 *           Compute s(j,j) and test for non-positive-definiteness.
161 *
162             AJJ = DBLE( AB( KD+1, J ) )
163             IF( AJJ.LE.ZERO ) THEN
164                AB( KD+1, J ) = AJJ
165                GO TO 50
166             END IF
167             AJJ = SQRT( AJJ )
168             AB( KD+1, J ) = AJJ
169             KM = MIN( J-1, KD )
170 *
171 *           Compute elements j-km:j-1 of the j-th column and update the
172 *           the leading submatrix within the band.
173 *
174             CALL ZDSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
175             CALL ZHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
176      $                 AB( KD+1, J-KM ), KLD )
177    10    CONTINUE
178 *
179 *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
180 *
181          DO 20 J = 1, M
182 *
183 *           Compute s(j,j) and test for non-positive-definiteness.
184 *
185             AJJ = DBLE( AB( KD+1, J ) )
186             IF( AJJ.LE.ZERO ) THEN
187                AB( KD+1, J ) = AJJ
188                GO TO 50
189             END IF
190             AJJ = SQRT( AJJ )
191             AB( KD+1, J ) = AJJ
192             KM = MIN( KD, M-J )
193 *
194 *           Compute elements j+1:j+km of the j-th row and update the
195 *           trailing submatrix within the band.
196 *
197             IF( KM.GT.0 ) THEN
198                CALL ZDSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
199                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
200                CALL ZHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
201      $                    AB( KD+1, J+1 ), KLD )
202                CALL ZLACGV( KM, AB( KD, J+1 ), KLD )
203             END IF
204    20    CONTINUE
205       ELSE
206 *
207 *        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
208 *
209          DO 30 J = N, M + 1-1
210 *
211 *           Compute s(j,j) and test for non-positive-definiteness.
212 *
213             AJJ = DBLE( AB( 1, J ) )
214             IF( AJJ.LE.ZERO ) THEN
215                AB( 1, J ) = AJJ
216                GO TO 50
217             END IF
218             AJJ = SQRT( AJJ )
219             AB( 1, J ) = AJJ
220             KM = MIN( J-1, KD )
221 *
222 *           Compute elements j-km:j-1 of the j-th row and update the
223 *           trailing submatrix within the band.
224 *
225             CALL ZDSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
226             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
227             CALL ZHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
228      $                 AB( 1, J-KM ), KLD )
229             CALL ZLACGV( KM, AB( KM+1, J-KM ), KLD )
230    30    CONTINUE
231 *
232 *        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
233 *
234          DO 40 J = 1, M
235 *
236 *           Compute s(j,j) and test for non-positive-definiteness.
237 *
238             AJJ = DBLE( AB( 1, J ) )
239             IF( AJJ.LE.ZERO ) THEN
240                AB( 1, J ) = AJJ
241                GO TO 50
242             END IF
243             AJJ = SQRT( AJJ )
244             AB( 1, J ) = AJJ
245             KM = MIN( KD, M-J )
246 *
247 *           Compute elements j+1:j+km of the j-th column and update the
248 *           trailing submatrix within the band.
249 *
250             IF( KM.GT.0 ) THEN
251                CALL ZDSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
252                CALL ZHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
253      $                    AB( 1, J+1 ), KLD )
254             END IF
255    40    CONTINUE
256       END IF
257       RETURN
258 *
259    50 CONTINUE
260       INFO = J
261       RETURN
262 *
263 *     End of ZPBSTF
264 *
265       END