1       SUBROUTINE ZPFTRF( TRANSR, UPLO, N, A, INFO )
  2 *
  3 *  -- LAPACK routine (version 3.3.1)                                    --
  4 *
  5 *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
  6 *  -- April 2011                                                      ----
  7 *
  8 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  9 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 10 *
 11 *     ..
 12 *     .. Scalar Arguments ..
 13       CHARACTER          TRANSR, UPLO
 14       INTEGER            N, INFO
 15 *     ..
 16 *     .. Array Arguments ..
 17       COMPLEX*16         A( 0* )
 18 *
 19 *  Purpose
 20 *  =======
 21 *
 22 *  ZPFTRF computes the Cholesky factorization of a complex Hermitian
 23 *  positive definite matrix A.
 24 *
 25 *  The factorization has the form
 26 *     A = U**H * U,  if UPLO = 'U', or
 27 *     A = L  * L**H,  if UPLO = 'L',
 28 *  where U is an upper triangular matrix and L is lower triangular.
 29 *
 30 *  This is the block version of the algorithm, calling Level 3 BLAS.
 31 *
 32 *  Arguments
 33 *  =========
 34 *
 35 *  TRANSR    (input) CHARACTER*1
 36 *          = 'N':  The Normal TRANSR of RFP A is stored;
 37 *          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
 38 *
 39 *  UPLO    (input) CHARACTER*1
 40 *          = 'U':  Upper triangle of RFP A is stored;
 41 *          = 'L':  Lower triangle of RFP A is stored.
 42 *
 43 *  N       (input) INTEGER
 44 *          The order of the matrix A.  N >= 0.
 45 *
 46 *  A       (input/output) COMPLEX array, dimension ( N*(N+1)/2 );
 47 *          On entry, the Hermitian matrix A in RFP format. RFP format is
 48 *          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
 49 *          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
 50 *          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
 51 *          the Conjugate-transpose of RFP A as defined when
 52 *          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
 53 *          follows: If UPLO = 'U' the RFP A contains the nt elements of
 54 *          upper packed A. If UPLO = 'L' the RFP A contains the elements
 55 *          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
 56 *          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
 57 *          is odd. See the Note below for more details.
 58 *
 59 *          On exit, if INFO = 0, the factor U or L from the Cholesky
 60 *          factorization RFP A = U**H*U or RFP A = L*L**H.
 61 *
 62 *  INFO    (output) INTEGER
 63 *          = 0:  successful exit
 64 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 65 *          > 0:  if INFO = i, the leading minor of order i is not
 66 *                positive definite, and the factorization could not be
 67 *                completed.
 68 *
 69 *  Further Notes on RFP Format:
 70 *  ============================
 71 *
 72 *  We first consider Standard Packed Format when N is even.
 73 *  We give an example where N = 6.
 74 *
 75 *     AP is Upper             AP is Lower
 76 *
 77 *   00 01 02 03 04 05       00
 78 *      11 12 13 14 15       10 11
 79 *         22 23 24 25       20 21 22
 80 *            33 34 35       30 31 32 33
 81 *               44 45       40 41 42 43 44
 82 *                  55       50 51 52 53 54 55
 83 *
 84 *
 85 *  Let TRANSR = 'N'. RFP holds AP as follows:
 86 *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 87 *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 88 *  conjugate-transpose of the first three columns of AP upper.
 89 *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 90 *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 91 *  conjugate-transpose of the last three columns of AP lower.
 92 *  To denote conjugate we place -- above the element. This covers the
 93 *  case N even and TRANSR = 'N'.
 94 *
 95 *         RFP A                   RFP A
 96 *
 97 *                                -- -- --
 98 *        03 04 05                33 43 53
 99 *                                   -- --
100 *        13 14 15                00 44 54
101 *                                      --
102 *        23 24 25                10 11 55
103 *
104 *        33 34 35                20 21 22
105 *        --
106 *        00 44 45                30 31 32
107 *        -- --
108 *        01 11 55                40 41 42
109 *        -- -- --
110 *        02 12 22                50 51 52
111 *
112 *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
113 *  transpose of RFP A above. One therefore gets:
114 *
115 *
116 *           RFP A                   RFP A
117 *
118 *     -- -- -- --                -- -- -- -- -- --
119 *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
120 *     -- -- -- -- --                -- -- -- -- --
121 *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
122 *     -- -- -- -- -- --                -- -- -- --
123 *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
124 *
125 *
126 *  We next  consider Standard Packed Format when N is odd.
127 *  We give an example where N = 5.
128 *
129 *     AP is Upper                 AP is Lower
130 *
131 *   00 01 02 03 04              00
132 *      11 12 13 14              10 11
133 *         22 23 24              20 21 22
134 *            33 34              30 31 32 33
135 *               44              40 41 42 43 44
136 *
137 *
138 *  Let TRANSR = 'N'. RFP holds AP as follows:
139 *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
140 *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
141 *  conjugate-transpose of the first two   columns of AP upper.
142 *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
143 *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
144 *  conjugate-transpose of the last two   columns of AP lower.
145 *  To denote conjugate we place -- above the element. This covers the
146 *  case N odd  and TRANSR = 'N'.
147 *
148 *         RFP A                   RFP A
149 *
150 *                                   -- --
151 *        02 03 04                00 33 43
152 *                                      --
153 *        12 13 14                10 11 44
154 *
155 *        22 23 24                20 21 22
156 *        --
157 *        00 33 34                30 31 32
158 *        -- --
159 *        01 11 44                40 41 42
160 *
161 *  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
162 *  transpose of RFP A above. One therefore gets:
163 *
164 *
165 *           RFP A                   RFP A
166 *
167 *     -- -- --                   -- -- -- -- -- --
168 *     02 12 22 00 01             00 10 20 30 40 50
169 *     -- -- -- --                   -- -- -- -- --
170 *     03 13 23 33 11             33 11 21 31 41 51
171 *     -- -- -- -- --                   -- -- -- --
172 *     04 14 24 34 44             43 44 22 32 42 52
173 *
174 *  =====================================================================
175 *
176 *     .. Parameters ..
177       DOUBLE PRECISION   ONE
178       COMPLEX*16         CONE
179       PARAMETER          ( ONE = 1.0D+0, CONE = ( 1.0D+00.0D+0 ) )
180 *     ..
181 *     .. Local Scalars ..
182       LOGICAL            LOWER, NISODD, NORMALTRANSR
183       INTEGER            N1, N2, K
184 *     ..
185 *     .. External Functions ..
186       LOGICAL            LSAME
187       EXTERNAL           LSAME
188 *     ..
189 *     .. External Subroutines ..
190       EXTERNAL           XERBLA, ZHERK, ZPOTRF, ZTRSM
191 *     ..
192 *     .. Intrinsic Functions ..
193       INTRINSIC          MOD
194 *     ..
195 *     .. Executable Statements ..
196 *
197 *     Test the input parameters.
198 *
199       INFO = 0
200       NORMALTRANSR = LSAME( TRANSR, 'N' )
201       LOWER = LSAME( UPLO, 'L' )
202       IF.NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
203          INFO = -1
204       ELSE IF.NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
205          INFO = -2
206       ELSE IF( N.LT.0 ) THEN
207          INFO = -3
208       END IF
209       IF( INFO.NE.0 ) THEN
210          CALL XERBLA( 'ZPFTRF'-INFO )
211          RETURN
212       END IF
213 *
214 *     Quick return if possible
215 *
216       IF( N.EQ.0 )
217      $   RETURN
218 *
219 *     If N is odd, set NISODD = .TRUE.
220 *     If N is even, set K = N/2 and NISODD = .FALSE.
221 *
222       IFMOD( N, 2 ).EQ.0 ) THEN
223          K = N / 2
224          NISODD = .FALSE.
225       ELSE
226          NISODD = .TRUE.
227       END IF
228 *
229 *     Set N1 and N2 depending on LOWER
230 *
231       IF( LOWER ) THEN
232          N2 = N / 2
233          N1 = N - N2
234       ELSE
235          N1 = N / 2
236          N2 = N - N1
237       END IF
238 *
239 *     start execution: there are eight cases
240 *
241       IF( NISODD ) THEN
242 *
243 *        N is odd
244 *
245          IF( NORMALTRANSR ) THEN
246 *
247 *           N is odd and TRANSR = 'N'
248 *
249             IF( LOWER ) THEN
250 *
251 *             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
252 *             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
253 *             T1 -> a(0), T2 -> a(n), S -> a(n1)
254 *
255                CALL ZPOTRF( 'L', N1, A( 0 ), N, INFO )
256                IF( INFO.GT.0 )
257      $            RETURN
258                CALL ZTRSM( 'R''L''C''N', N2, N1, CONE, A( 0 ), N,
259      $                     A( N1 ), N )
260                CALL ZHERK( 'U''N', N2, N1, -ONE, A( N1 ), N, ONE,
261      $                     A( N ), N )
262                CALL ZPOTRF( 'U', N2, A( N ), N, INFO )
263                IF( INFO.GT.0 )
264      $            INFO = INFO + N1
265 *
266             ELSE
267 *
268 *             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
269 *             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
270 *             T1 -> a(n2), T2 -> a(n1), S -> a(0)
271 *
272                CALL ZPOTRF( 'L', N1, A( N2 ), N, INFO )
273                IF( INFO.GT.0 )
274      $            RETURN
275                CALL ZTRSM( 'L''L''N''N', N1, N2, CONE, A( N2 ), N,
276      $                     A( 0 ), N )
277                CALL ZHERK( 'U''C', N2, N1, -ONE, A( 0 ), N, ONE,
278      $                     A( N1 ), N )
279                CALL ZPOTRF( 'U', N2, A( N1 ), N, INFO )
280                IF( INFO.GT.0 )
281      $            INFO = INFO + N1
282 *
283             END IF
284 *
285          ELSE
286 *
287 *           N is odd and TRANSR = 'C'
288 *
289             IF( LOWER ) THEN
290 *
291 *              SRPA for LOWER, TRANSPOSE and N is odd
292 *              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
293 *              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
294 *
295                CALL ZPOTRF( 'U', N1, A( 0 ), N1, INFO )
296                IF( INFO.GT.0 )
297      $            RETURN
298                CALL ZTRSM( 'L''U''C''N', N1, N2, CONE, A( 0 ), N1,
299      $                     A( N1*N1 ), N1 )
300                CALL ZHERK( 'L''C', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
301      $                     A( 1 ), N1 )
302                CALL ZPOTRF( 'L', N2, A( 1 ), N1, INFO )
303                IF( INFO.GT.0 )
304      $            INFO = INFO + N1
305 *
306             ELSE
307 *
308 *              SRPA for UPPER, TRANSPOSE and N is odd
309 *              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
310 *              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
311 *
312                CALL ZPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
313                IF( INFO.GT.0 )
314      $            RETURN
315                CALL ZTRSM( 'R''U''N''N', N2, N1, CONE, A( N2*N2 ),
316      $                     N2, A( 0 ), N2 )
317                CALL ZHERK( 'L''N', N2, N1, -ONE, A( 0 ), N2, ONE,
318      $                     A( N1*N2 ), N2 )
319                CALL ZPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
320                IF( INFO.GT.0 )
321      $            INFO = INFO + N1
322 *
323             END IF
324 *
325          END IF
326 *
327       ELSE
328 *
329 *        N is even
330 *
331          IF( NORMALTRANSR ) THEN
332 *
333 *           N is even and TRANSR = 'N'
334 *
335             IF( LOWER ) THEN
336 *
337 *              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
338 *              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
339 *              T1 -> a(1), T2 -> a(0), S -> a(k+1)
340 *
341                CALL ZPOTRF( 'L', K, A( 1 ), N+1, INFO )
342                IF( INFO.GT.0 )
343      $            RETURN
344                CALL ZTRSM( 'R''L''C''N', K, K, CONE, A( 1 ), N+1,
345      $                     A( K+1 ), N+1 )
346                CALL ZHERK( 'U''N', K, K, -ONE, A( K+1 ), N+1, ONE,
347      $                     A( 0 ), N+1 )
348                CALL ZPOTRF( 'U', K, A( 0 ), N+1, INFO )
349                IF( INFO.GT.0 )
350      $            INFO = INFO + K
351 *
352             ELSE
353 *
354 *              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
355 *              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
356 *              T1 -> a(k+1), T2 -> a(k), S -> a(0)
357 *
358                CALL ZPOTRF( 'L', K, A( K+1 ), N+1, INFO )
359                IF( INFO.GT.0 )
360      $            RETURN
361                CALL ZTRSM( 'L''L''N''N', K, K, CONE, A( K+1 ),
362      $                     N+1, A( 0 ), N+1 )
363                CALL ZHERK( 'U''C', K, K, -ONE, A( 0 ), N+1, ONE,
364      $                     A( K ), N+1 )
365                CALL ZPOTRF( 'U', K, A( K ), N+1, INFO )
366                IF( INFO.GT.0 )
367      $            INFO = INFO + K
368 *
369             END IF
370 *
371          ELSE
372 *
373 *           N is even and TRANSR = 'C'
374 *
375             IF( LOWER ) THEN
376 *
377 *              SRPA for LOWER, TRANSPOSE and N is even (see paper)
378 *              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
379 *              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
380 *
381                CALL ZPOTRF( 'U', K, A( 0+K ), K, INFO )
382                IF( INFO.GT.0 )
383      $            RETURN
384                CALL ZTRSM( 'L''U''C''N', K, K, CONE, A( K ), N1,
385      $                     A( K*( K+1 ) ), K )
386                CALL ZHERK( 'L''C', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
387      $                     A( 0 ), K )
388                CALL ZPOTRF( 'L', K, A( 0 ), K, INFO )
389                IF( INFO.GT.0 )
390      $            INFO = INFO + K
391 *
392             ELSE
393 *
394 *              SRPA for UPPER, TRANSPOSE and N is even (see paper)
395 *              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
396 *              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
397 *
398                CALL ZPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
399                IF( INFO.GT.0 )
400      $            RETURN
401                CALL ZTRSM( 'R''U''N''N', K, K, CONE,
402      $                     A( K*( K+1 ) ), K, A( 0 ), K )
403                CALL ZHERK( 'L''N', K, K, -ONE, A( 0 ), K, ONE,
404      $                     A( K*K ), K )
405                CALL ZPOTRF( 'L', K, A( K*K ), K, INFO )
406                IF( INFO.GT.0 )
407      $            INFO = INFO + K
408 *
409             END IF
410 *
411          END IF
412 *
413       END IF
414 *
415       RETURN
416 *
417 *     End of ZPFTRF
418 *
419       END